

i

About the Tutorial

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for

distributed, collaborative, hypermedia information systems. This is the

foundation for data communication for the World Wide Web (i.e. internet) since

1990. HTTP is a generic and stateless protocol which can be used for other

purposes as well using extensions of its request methods, error codes, and

headers.

This tutorial is based on RFC-2616 specification, which defines the protocol

referred to as HTTP/1.1. HTTP/1.1 is a revision of the original HTTP (HTTP/1.0).

A major difference between HTTP/1.0 and HTTP/1.1 is that HTTP/1.0 uses a new

connection for each request/response exchange, whereas HTTP/1.1 connection

may be used for one or more request/response exchanges.

Audience

This tutorial has been prepared for computer science graduates and web

developers to help them understand the basic-to-advanced level concepts

related to Hypertext Transfer Protocol (HTTP).

Prerequisites

Before proceeding with this tutorial, it is good to have a basic understanding of

web concepts, web browsers, web servers, client and server architecture based

softwares.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ··· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ·· i

Table of Contents ·· ii

1. OVERVIEW ··· 1

Basic Features ··· 1

Basic Architecture ··· 1
Client ·· 2
Server ··· 2

2. PARAMETERS ·· 3

HTTP Version ·· 3

Uniform Resource Identifiers ·· 3

Date/Time Formats ··· 4

Character Sets ··· 4

Content Encodings ·· 4

Media Types ··· 5

Language Tags ··· 5

3. MESSAGES ··· 7

Message Start-Line ··· 8

Header Fields ·· 8

Message Body ··· 9

4. REQUESTS ··· 10

Request-Line ··· 10

Request Method ··· 10

iii

Request-URI ·· 11

Request Header Fields ·· 12

Examples of Request Message ·· 13

5. RESPONSES ·· 15

Message Status-Line ··· 15

HTTP Version ·· 15

Status Code ··· 16

Response Header Fields ·· 16

Examples of Response Message ·· 17

6. METHODS ·· 20

GET Method ·· 21

HEAD Method ··· 21

POST Method ·· 22

PUT Method ·· 23

DELETE Method··· 24

CONNECT Method ··· 25

OPTIONS Method ·· 25

TRACE Method ·· 26

7. STATUS CODES ·· 27

1xx: Information ··· 27

2xx: Successful ·· 28

3xx: Redirection ·· 28

4xx: Client Error ·· 29

5xx: Server Error ··· 30

8. HEADER FIELDS ·· 32

iv

General Headers ··· 32
Cache-Control ··· 32
Connection ··· 34
Date ·· 35
Pragma ··· 35
Trailer ··· 35
Transfer-Encoding ·· 36
Upgrade ·· 36
Via ··· 36
Warning ·· 36

Client Request Headers ··· 37
Accept ··· 37
Accept-Charset ··· 37
Accept-Encoding ··· 37
Accept-Language ·· 38
Authorization ·· 38
Cookie ··· 38
Expect ··· 39
From ··· 39
Host ·· 39
If-Match ·· 39
If-Modified-Since ·· 40
If-None-Match ·· 40
If-Range ·· 41
If-Unmodified-Since ··· 41
Max-Forwards ·· 41
Proxy-Authorization ··· 42
Range ·· 42
Referer ·· 43
TE ·· 43
User-Agent ··· 43

Server Response Headers ·· 44
Accept-Ranges ·· 44
Age·· 44
ETag ·· 44
Location ·· 45
Proxy-Authenticate ·· 45
Retry-After ·· 45
Server ··· 46
Set-Cookie ·· 46
Vary ·· 47
WWW-Authenticate ··· 47

Entity Headers ·· 48
Allow ··· 48
Content-Encoding ··· 48
Content-Language ·· 48
Content-Length ·· 49
Content-Location ·· 49

v

Content-MD5 ·· 49
Content-Range ··· 50
Content-Type ·· 50
Expires ·· 51
Last-Modified ··· 51

9. CACHING ··· 52

10. URL ENCODING ··· 55

11. SECURITY ··· 61

Personal Information Leakage ·· 61

File and Path Names Based Attack ·· 61

DNS Spoofing ·· 62

Location Headers and Spoofing ··· 62

Authentication Credentials ··· 62

Proxies and Caching ·· 62

12. MESSAGE EXAMPLES ··· 63

Example 1 ··· 63
Client request ··· 63
Server response ·· 63

Example 2 ··· 64
Client request ··· 64
Server response ·· 64

Example 3 ··· 65
Client request ··· 65
Server response ·· 65

Example 4 ··· 66
Client request ··· 66
Server response ·· 66

HTTP

1

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for

distributed, collaborative, hypermedia information systems. This is the

foundation for data communication for the World Wide Web (i.e. internet) since

1990. HTTP is a generic and stateless protocol which can be used for other

purposes as well using extensions of its request methods, error codes, and

headers.

Basically, HTTP is a TCP/IP based communication protocol that is used to deliver

data (HTML files, image files, query results, etc.) on the World Wide Web. The

default port is TCP 80, but other ports can be used as well. It provides a

standardized way for computers to communicate with each other. HTTP

specification specifies how clients’ request data will be constructed and sent to

the server, and how the servers respond to these requests.

Basic Features

There are three basic features that make HTTP a simple but powerful protocol:

 HTTP is connectionless: The HTTP client, i.e., a browser initiates an

HTTP request and after a request is made, the client disconnects from the

server and waits for a response. The server processes the request and re-

establishes the connection with the client to send a response back.

 HTTP is media independent: It means, any type of data can be sent by

HTTP as long as both the client and the server know how to handle the

data content. It is required for the client as well as the server to specify

the content type using appropriate MIME-type.

 HTTP is stateless: As mentioned above, HTTP is connectionless and it is

a direct result of HTTP being a stateless protocol. The server and client

are aware of each other only during a current request. Afterwards, both of

them forget about each other. Due to this nature of the protocol, neither

the client nor the browser can retain information between different

requests across the web pages.

HTTP/1.0 uses a new connection for each request/response exchange, whereas

HTTP/1.1 connection may be used for one or more request/response exchanges.

Basic Architecture

The following diagram shows a very basic architecture of a web application and

depicts where HTTP sits:

1. OVERVIEW

HTTP

2

The HTTP protocol is a request/response protocol based on the client/server

based architecture where web browsers, robots and search engines, etc. act like

HTTP clients, and the Web server acts as a server.

Client

The HTTP client sends a request to the server in the form of a request method,

URI, and protocol version, followed by a MIME-like message containing request

modifiers, client information, and possible body content over a TCP/IP

connection.

Server

The HTTP server responds with a status line, including the message's protocol

version and a success or error code, followed by a MIME-like message containing

server information, entity meta-information, and possible entity-body content.

HTTP

3

This chapter is going to list down few of the important HTTP Protocol Parameters

and their syntax the way they are used in the communication. For example,

format for date, format of URL, etc. This will help you in constructing your

request and response messages while writing HTTP client or server programs.

You will see the complete usage of these parameters in subsequent chapters

while learning the message structure for HTTP requests and responses.

HTTP Version

HTTP uses a <major>.<minor> numbering scheme to indicate versions of the

protocol. The version of an HTTP message is indicated by an HTTP-Version field

in the first line. Here is the general syntax of specifying HTTP version number:

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

Example

HTTP/1.0

or

HTTP/1.1

Uniform Resource Identifiers

Uniform Resource Identifiers (URI) are simply formatted, case-insensitive string

containing name, location, etc. to identify a resource, for example, a website, a

web service, etc. A general syntax of URI used for HTTP is as follows:

URI = "http:" "//" host [":" port] [abs_path ["?" query]]

Here if the port is empty or not given, port 80 is assumed for HTTP and an

empty abs_path is equivalent to an abs_path of "/". The characters other than

those in the reserved and unsafe sets are equivalent to their ""%" HEX HEX"

encoding.

Example

2. PARAMETERS

HTTP

4

The following three URIs are equivalent:

http://abc.com:80/~smith/home.html

http://ABC.com/%7Esmith/home.html

http://ABC.com:/%7esmith/home.html

Date/Time Formats

All HTTP date/time stamps MUST be represented in Greenwich Mean Time

(GMT), without exception. HTTP applications are allowed to use any of the

following three representations of date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

Character Sets

We use character sets to specify the character sets that the client prefers.

Multiple character sets can be listed separated by commas. If a value is not

specified, the default is the US-ASCII.

Example

Following are the valid character sets:

US-ASCII

or

ISO-8859-1

or

ISO-8859-7

Content Encodings

A content encoding value indicates that an encoding algorithm has been used to

encode the content before passing it over the network. Content coding are

HTTP

5

primarily used to allow a document to be compressed or otherwise usefully

transformed without losing the identity.

All content-coding values are case-insensitive. HTTP/1.1 uses content-coding

values in the Accept-Encoding and Content-Encoding header fields which we will

see in the subsequent chapters.

Example

Following are the valid encoding schemes:

Accept-encoding: gzip

or

Accept-encoding: compress

or

Accept-encoding: deflate

Media Types

HTTP uses Internet Media Types in the Content-Type and Accept header fields

in order to provide open and extensible data typing and type negotiation. All the

Media-type values are registered with the Internet Assigned Number Authority

(IANA). The general syntax to specify media type is as follows:

media-type = type "/" subtype *(";" parameter)

The type, subtype, and parameter attribute names are case-insensitive.

Example

Accept: image/gif

Language Tags

HTTP uses language tags within the Accept-Language and Content-Language

fields. A language tag is composed of one or more parts: a primary language tag

and a possibly empty series of subtags:

language-tag = primary-tag *("-" subtag)

HTTP

6

Whitespaces are not allowed within the tags and all tags are case-insensitive.

Example

Example tags include:

 en, en-US, en-cockney, i-cherokee, x-pig-latin

where any two-letter primary-tag is an ISO-639 language abbreviation and any

two-letter initial subtag is an ISO-3166 country code.

HTTP

7

HTTP is based on the client-server architecture model and a stateless

request/response protocol that operates by exchanging messages across a

reliable TCP/IP connection.

An HTTP "client" is a program (Web browser or any other client) that establishes

a connection to a server for the purpose of sending one or more HTTP request

messages. An HTTP "server" is a program (generally a web server like Apache

Web Server or Internet Information Services IIS, etc.) that accepts connections

in order to serve HTTP requests by sending HTTP response messages.

HTTP makes use of the Uniform Resource Identifier (URI) to identify a given

resource and to establish a connection. Once the connection is

established, HTTP messages are passed in a format similar to that used by the

Internet mail [RFC5322] and the Multipurpose Internet Mail Extensions (MIME)

[RFC2045]. These messages include requests from client to server

and responses from server to client which will have the following format:

 HTTP-message = <Request> | <Response> ; HTTP/1.1 messages

HTTP requests and HTTP responses use a generic message format of RFC 822 for

transferring the required data. This generic message format consists of the

following four items.

A Start-line

Zero or more header fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating

the end of the header fields

Optionally a message-body

In the following sections, we will explain each of the entities used in an HTTP

message.

3. MESSAGES

HTTP

8

Message Start-Line

A start-line will have the following generic syntax:

start-line = Request-Line | Status-Line

We will discuss Request-Line and Status-Line while discussing HTTP Request and

HTTP Response messages respectively. For now, let's see the examples of start

line in case of request and response:

GET /hello.htm HTTP/1.1 (This is Request-Line sent by the client)

HTTP/1.1 200 OK (This is Status-Line sent by the server)

Header Fields

HTTP header fields provide required information about the request or response,

or about the object sent in the message body. There are four types of HTTP

message headers:

 General-header: These header fields have general applicability for both

request and response messages.

 Request-header: These header fields have applicability only for request

messages.

 Response-header: These header fields have applicability only for

response messages.

 Entity-header: These header fields define meta-information about the

entity-body or, if no body is present, about the resource identified by the

request.

All the above-mentioned headers follow the same generic format and each of the

header field consists of a name followed by a colon (:) and the field value as

follows:

message-header = field-name ":" [field-value]

Following are the examples of various header fields:

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

Host: www.example.com

Accept-Language: en, mi

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache

HTTP

9

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes

Content-Length: 51

Vary: Accept-Encoding

Content-Type: text/plain

Message Body

The message body part is optional for an HTTP message but if it is available,

then it is used to carry the entity-body associated with the request or response.

If entity body is associated, then usually Content-Type and Content-Length

headers lines specify the nature of the body associated.

A message body is the one which carries the actual HTTP request data (including

form data and uploaded, etc.) and HTTP response data from the server

(including files, images, etc.). Shown below is the simple content of a message

body:

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

HTTP

10

An HTTP client sends an HTTP request to a server in the form of a request

message which includes the following format:

A Request-line

Zero or more header (General|Request|Entity) fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating

the end of the header fields

Optionally a message-body

The following sections explain each of the entities used in an HTTP request

message.

Request-Line

The Request-Line begins with a method token, followed by the Request-URI and

the protocol version, and ending with CRLF. The elements are separated by

space SP characters.

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Let's discuss each of the parts mentioned in the Request-Line.

Request Method

The request method indicates the method to be performed on the resource

identified by the given Request-URI. The method is case-sensitive and should

always be mentioned in uppercase. The following table lists all the supported

methods in HTTP/1.1.

4. REQUESTS

HTTP

11

S.N. Method and Description

1 GET

The GET method is used to retrieve information from the given server

using a given URI. Requests using GET should only retrieve data and

should have no other effect on the data.

2 HEAD

Same as GET, but it transfers the status line and the header section

only.

3 POST

A POST request is used to send data to the server, for example,

customer information, file upload, etc. using HTML forms.

4 PUT

Replaces all the current representations of the target resource with the

uploaded content.

5 DELETE

Removes all the current representations of the target resource given by

URI.

6 CONNECT

Establishes a tunnel to the server identified by a given URI.

7 OPTIONS

Describes the communication options for the target resource.

8 TRACE

Performs a message loopback test along with the path to the target

resource.

Request-URI

The Request-URI is a Uniform Resource Identifier and identifies the resource

upon which to apply the request. Following are the most commonly used forms

to specify an URI:

Request-URI = "*" | absoluteURI | abs_path | authority

HTTP

12

S.N. Method and Description

1 The asterisk * is used when an HTTP request does not apply to a

particular resource, but to the server itself, and is only allowed when

the method used does not necessarily apply to a resource. For example:

OPTIONS * HTTP/1.1

2 The absoluteURI is used when an HTTP request is being made to a

proxy. The proxy is requested to forward the request or service from a

valid cache, and return the response. For example:

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

3 The most common form of Request-URI is that used to identify a

resource on an origin server or gateway. For example, a client wishing

to retrieve a resource directly from the origin server would create a TCP

connection to port 80 of the host "www.w3.org" and send the following

lines:

GET /pub/WWW/TheProject.html HTTP/1.1

Host: www.w3.org

Note that the absolute path cannot be empty; if none is present in the

original URI, it MUST be given as "/" (the server root).

Request Header Fields

We will study General-header and Entity-header in a separate chapter when we

will learn HTTP header fields. For now, let's check what Request header fields

are.

The request-header fields allow the client to pass additional information about

the request, and about the client itself, to the server. These fields act as request

modifiers. Here is a list of some important Request-header fields that can be

used based on the requirement:

 Accept-Charset

 Accept-Encoding

 Accept-Language

 Authorization

HTTP

13

 Expect

 From

 Host

 If-Match

 If-Modified-Since

 If-None-Match

 If-Range

 If-Unmodified-Since

 Max-Forwards

 Proxy-Authorization

 Range

 Referer

 TE

 User-Agent

You can introduce your custom fields in case you are going to write your own

custom Client and Web Server.

Examples of Request Message

Now let's put it all together to form an HTTP request to fetch hello.htm page

from the web server running on tutorialspoint.com

GET /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Here we are not sending any request data to the server because we are fetching

a plain HTML page from the server. Connection is a general-header, and the rest

of the headers are request headers.

The following example shows how to send form data to the server using request

message body:

POST /cgi-bin/process.cgi HTTP/1.1

HTTP

14

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Content-Type: application/x-www-form-urlencoded

Content-Length: length

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

licenseID=string&content=string&/paramsXML=string

Here the given URL /cgi-bin/process.cgi will be used to process the passed data

and accordingly, a response will be returned. Here content-type tells the server

that the passed data is a simple web form data and length will be the actual

length of the data put in the message body. The following example shows how

you can pass plain XML to your web server:

POST /cgi-bin/process.cgi HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Content-Type: text/xml; charset=utf-8

Content-Length: length

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://clearforest.com/">string</string>

HTTP

15

After receiving and interpreting a request message, a server responds with an

HTTP response message:

A Status-line

Zero or more header (General|Response|Entity) fields followed by CRLF

An empty line (i.e., a line with nothing preceding the CRLF) indicating

the end of the header fields

Optionally a message-body

The following sections explain each of the entities used in an HTTP response

message.

Message Status-Line

A Status-Line consists of the protocol version followed by a numeric status code

and its associated textual phrase. The elements are separated by space SP

characters.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

HTTP Version

A server supporting HTTP version 1.1 will return the following version

information:

HTTP-Version = HTTP/1.1

5. RESPONSES

HTTP

16

Status Code

The Status-Code element is a 3-digit integer where first digit of the Status-Code

defines the class of response and the last two digits do not have any

categorization role. There are 5 values for the first digit:

S.N. Code and Description

1 1xx: Informational

It means the request was received and the process is continuing.

2 2xx: Success

It means the action was successfully received, understood, and

accepted.

3 3xx: Redirection

It means further action must be taken in order to complete the request.

4 4xx: Client Error

It means the request contains incorrect syntax or cannot be fulfilled.

5 5xx: Server Error

It means the server failed to fulfill an apparently valid request.

HTTP status codes are extensible and HTTP applications are not required to

understand the meaning of all registered status codes. A list of all the status

codes has been given in a separate chapter for your reference.

Response Header Fields

We will study General-header and Entity-header in a separate chapter when we

will learn HTTP header fields. For now, let's check what Response header fields

are.

The response-header fields allow the server to pass additional information about

the response which cannot be placed in the Status-Line. These header fields give

information about the server and about further access to the resource identified

by the Request-URI.

 Accept-Ranges

 Age

 ETag

HTTP

17

 Location

 Proxy-Authenticate

 Retry-After

 Server

 Vary

 WWW-Authenticate

You can introduce your custom fields in case you are going to write your own

custom Web Client and Server.

Examples of Response Message

Now let's put it all together to form an HTTP response for a request to fetch

the hello.htm page from the web server running on tutorialspoint.com

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

The following example shows an HTTP response message displaying error

condition when the web server could not find the requested page:

HTTP/1.1 404 Not Found

Date: Sun, 18 Oct 2012 10:36:20 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 230

Connection: Closed

HTTP

18

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head>

 <title>404 Not Found</title>

</head>

<body>

 <h1>Not Found</h1>

 <p>The requested URL /t.html was not found on this server.</p>

</body>

</html>

Following is an example of HTTP response message showing error condition

when the web server encountered a wrong HTTP version in the given HTTP

request:

HTTP/1.1 400 Bad Request

Date: Sun, 18 Oct 2012 10:36:20 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 230

Content-Type: text/html; charset=iso-8859-1

Connection: Closed

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head>

 <title>400 Bad Request</title>

</head>

<body>

 <h1>Bad Request</h1>

 <p>Your browser sent a request that this server could not understand.<p>

 <p>The request line contained invalid characters following the

protocol string.<p>

</body>

HTTP

19

</html>

HTTP

20

The set of common methods for HTTP/1.1 is defined below and this set can be

expanded based on requirements. These method names are case-sensitive and

they must be used in uppercase.

S.N. Method and Description

1 GET

The GET method is used to retrieve information from the given server

using a given URI. Requests using GET should only retrieve data and

should have no other effect on the data.

2 HEAD

Same as GET, but transfers the status line and header section only.

3 POST

A POST request is used to send data to the server, for example,

customer information, file upload, etc. using HTML forms.

4 PUT

Replaces all current representations of the target resource with the

uploaded content.

5 DELETE

Removes all current representations of the target resource given by a

URI.

6 CONNECT

Establishes a tunnel to the server identified by a given URI.

7 OPTIONS

Describes the communication options for the target resource.

8 TRACE

Performs a message loopback test along the path to the target

resource.

6. METHODS

HTTP

21

GET Method

A GET request retrieves data from a web server by specifying parameters in the

URL portion of the request. This is the main method used for document retrieval.

The following example makes use of GET method to fetch hello.htm:

GET /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

The server response against the above GET request will be as follows:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

HEAD Method

The HEAD method is functionally similar to GET, except that the server replies

with a response line and headers, but no entity-body. The following example

makes use of HEAD method to fetch header information about hello.htm:

HTTP

22

HEAD /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

The server response against the above GET request will be as follows:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

You can notice that here the server does not send any data after header.

POST Method

The POST method is used when you want to send some data to the server, for

example, file update, form data, etc. The following example makes use of POST

method to send a form data to the server, which will be processed by a

process.cgi and finally a response will be returned:

POST /cgi-bin/process.cgi HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Content-Type: text/xml; charset=utf-8

Content-Length: 88

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

HTTP

23

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://clearforest.com/">string</string>

The server-side script process.cgi processes the passed data and sends the

following response:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Vary: Authorization,Accept

Accept-Ranges: bytes

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Request Processed Successfully</h1>

</body>

</html>

PUT Method

The PUT method is used to request the server to store the included entity-body

at a location specified by the given URL. The following example requests the

server to save the given entity-boy in hello.htm at the root of the server:

PUT /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Connection: Keep-Alive

Content-type: text/html

HTTP

24

Content-Length: 182

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

The server will store the given entity-body in hello.htm file and will send the

following response back to the client:

HTTP/1.1 201 Created

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Content-type: text/html

Content-length: 30

Connection: Closed

<html>

<body>

<h1>The file was created.</h1>

</body>

</html>

DELETE Method

The DELETE method is used to request the server to delete a file at a location

specified by the given URL. The following example requests the server to delete

the given file hello.htm at the root of the server:

DELETE /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Connection: Keep-Alive

The server will delete the mentioned file hello.htm and will send the following

response back to the client:

HTTP

25

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Content-type: text/html

Content-length: 30

Connection: Closed

<html>

<body>

<h1>URL deleted.</h1>

</body>

</html>

CONNECT Method

The CONNECT method is used by the client to establish a network connection to

a web server over HTTP. The following example requests a connection with a

web server running on the host tutorialspoint.com:

CONNECT www.tutorialspoint.com HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

The connection is established with the server and the following response is sent

back to the client:

HTTP/1.1 200 Connection established

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

OPTIONS Method

The OPTIONS method is used by the client to find out the HTTP methods and

other options supported by a web server. The client can specify a URL for the

OPTIONS method, or an asterisk (*) to refer to the entire server. The following

example requests a list of methods supported by a web server running on

tutorialspoint.com:

OPTIONS * HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

HTTP

26

The server will send an information based on the current configuration of the

server, for example:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Type: httpd/unix-directory

TRACE Method

The TRACE method is used to echo the contents of an HTTP Request back to the

requester which can be used for debugging purpose at the time of development.

The following example shows the usage of TRACE method:

TRACE / HTTP/1.1

Host: www.tutorialspoint.com

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

The server will send the following message in response to the above request:

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Content-Type: message/http

Content-Length: 39

Connection: Closed

TRACE / HTTP/1.1

Host: www.tutorialspoint.com

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

HTTP

27

The Status-Code element in a server response is a 3-digit integer where the first

digit of the Status-Code defines the class of response and the last two digits do

not have any categorization role. There are 5 values for the first digit:

S.N. Code and Description

1 1xx: Informational

It means the request has been received and the process is continuing.

2 2xx: Success

It means the action was successfully received, understood, and

accepted.

3 3xx: Redirection

It means further action must be taken in order to complete the request.

4 4xx: Client Error

It means the request contains incorrect syntax or cannot be fulfilled.

5 5xx: Server Error

It means the server failed to fulfill an apparently valid request.

HTTP status codes are extensible and HTTP applications are not required to

understand the meaning of all the registered status codes. Given below is a list

of all the status codes.

1xx: Information

Message Description

100 Continue Only a part of the request has been received

by the server, but as long as it has not been

rejected, the client should continue with the

request.

7. STATUS CODES

HTTP

28

101 Switching Protocols The server switches protocol.

2xx: Successful

Message Description

200 OK The request is OK.

201 Created The request is complete, and a new resource is

created.

202 Accepted The request is accepted for processing, but the

processing is not complete.

203 Non-authoritative

Information

The information in the entity header is from a

local or third-party copy, not from the original

server.

204 No Content A status code and a header are given in the

response, but there is no entity-body in the

reply.

205 Reset Content The browser should clear the form used for this

transaction for additional input.

206 Partial Content The server is returning partial data of the size

requested. Used in response to a request

specifying a Range header. The server must

specify the range included in the response with

the Content-Range header.

3xx: Redirection

Message Description

300 Multiple Choices A link list. The user can select a link and go to

that location. Maximum five addresses.

301 Moved Permanently The requested page has moved to a new url.

302 Found The requested page has moved temporarily to

HTTP

29

a new url.

303 See Other The requested page can be found under a

different url.

304 Not Modified This is the response code to an If-Modified-

Since or If-None-Match header, where the URL

has not been modified since the specified date.

305 Use Proxy The requested URL must be accessed through

the proxy mentioned in the Location header.

306 Unused This code was used in a previous version. It is

no longer used, but the code is reserved

307 Temporary Redirect The requested page has moved temporarily to

a new url.

4xx: Client Error

Message Description

400 Bad Request The server did not understand the request.

401 Unauthorized The requested page needs a username and a

password.

402 Payment Required You cannot use this code yet.

403 Forbidden Access is forbidden to the requested page.

404 Not Found The server cannot find the requested page.

405 Method Not Allowed The method specified in the request is not

allowed.

406 Not Acceptable The server can only generate a response that

is not accepted by the client.

407 Proxy Authentication

Required

You must authenticate with a proxy server

before this request can be served.

HTTP

30

408 Request Timeout The request took longer than the server was

prepared to wait.

409 Conflict The request could not be completed because of

a conflict.

410 Gone The requested page is no longer available.

411 Length Required The "Content-Length" is not defined. The

server will not accept the request without it.

412 Precondition Failed The pre-condition given in the request

evaluated to false by the server.

413 Request Entity Too Large The server will not accept the request, because

the request entity is too large.

414 Request-url Too Long The server will not accept the request, because

the url is too long. Occurs when you convert a

"post" request to a "get" request with a long

query information.

415 Unsupported Media Type The server will not accept the request, because

the media type is not supported.

416 Requested Range Not

Satisfiable

The requested byte range is not available and

is out of bounds.

417 Expectation Failed The expectation given in an Expect request-

header field could not be met by this server.

5xx: Server Error

Message Description

500 Internal Server Error The request was not completed. The server

met an unexpected condition.

501 Not Implemented The request was not completed. The server did

not support the functionality required.

502 Bad Gateway The request was not completed. The server

received an invalid response from the

HTTP

31

upstream server.

503 Service Unavailable The request was not completed. The server is

temporarily overloading or down.

504 Gateway Timeout The gateway has timed out.

505 HTTP Version Not

Supported

The server does not support the "http protocol"

version.

HTTP

32

HTTP header fields provide required information about the request or response,

or about the object sent in the message body. There are four types of HTTP

message headers:

 General-header: These header fields have general applicability for both

request and response messages.

 Client Request-header: These header fields have applicability only for

request messages.

 Server Response-header: These header fields have applicability only for

response messages.

 Entity-header: These header fields define meta-information about the

entity-body or, if no body is present, about the resource identified by the

request

General Headers

Cache-Control

The Cache-Control general-header field is used to specify directives that MUST

be obeyed by all the caching system. The syntax is as follows:

Cache-Control : cache-request-directive|cache-response-directive

An HTTP client or server can use the Cache-control general header to specify

parameters for the cache or to request certain kinds of documents from the

cache. The caching directives are specified in a comma-separated list. For

example:

Cache-control: no-cache

The following table lists the important cache request directives that can be used

by the client in its HTTP request:

S.N. Cache Request Directive and Description

1 no-cache

A cache must not use the response to satisfy a subsequent request

without successful revalidation with the origin server.

8. HEADER FIELDS

HTTP

33

2 no-store

The cache should not store anything about the client request or server

response.

3 max-age = seconds

Indicates that the client is willing to accept a response whose age is not

greater than the specified time in seconds.

4 max-stale [= seconds]

Indicates that the client is willing to accept a response that has

exceeded its expiration time. If seconds are given, it must not be

expired by more than that time.

5 min-fresh = seconds

Indicates that the client is willing to accept a response whose freshness

lifetime is not less than its current age plus the specified time in

seconds.

6 no-transform

Does not convert the entity-body.

7 only-if-cached

Does not retrieve new data. The cache can send a document only if it is

in the cache, and should not contact the origin-server to see if a newer

copy exists.

Thefollowing important cache response directives can be used by the server in

its HTTP response:

S.N. Cache Request Directive and Description

1 public

Indicates that the response may be cached by any cache.

2 private

Indicates that all or part of the response message is intended for a

single user and must not be cached by a shared cache.

3 no-cache

A cache must not use the response to satisfy a subsequent request

HTTP

34

without successful re-validation with the origin server.

4 no-store

The cache should not store anything about the client request or server

response.

5 no-transform

Does not convert the entity-body.

6 must-revalidate

The cache must verify the status of the stale documents before using it

and expired ones should not be used.

7 proxy-revalidate

The proxy-revalidate directive has the same meaning as the must-

revalidate directive, except that it does not apply to non-shared user

agent caches.

8 max-age = seconds

Indicates that the client is willing to accept a response whose age is not

greater than the specified time in seconds.

9 s-maxage = seconds

The maximum age specified by this directive overrides the maximum

age specified by either the max-age directive or the Expires header. The

s-maxage directive is always ignored by a private cache.

Connection

The Connection general-header field allows the sender to specify options that

are desired for that particular connection and must not be communicated by

proxies over further connections. Following is the simple syntax for using

connection header:

Connection : "Connection"

HTTP/1.1 defines the "closed" connection option for the sender to signal that the

connection will be closed after completion of the response. For example:

Connection: Closed

By default, HTTP 1.1 uses persistent connections, where the connection does not

automatically close after a transaction. HTTP 1.0, on the other hand, does not

HTTP

35

have persistent connections by default. If a 1.0 client wishes to use persistent

connections, it uses the keep-alive parameter as follows:

Connection: keep-alive

Date

All HTTP date/time stamps MUST be represented in Greenwich Mean Time

(GMT), without exception. HTTP applications are allowed to use any of the

following three representations of date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

Here the first format is the most preferred one.

Pragma

The Pragma general-header field is used to include implementation-specific

directives that might apply to any recipient along the request/response chain.

For example:

Pragma: no-cache

The only directive defined in HTTP/1.0 is the no-cache directive and is

maintained in HTTP 1.1 for backward compatibility. No new Pragma directives

will be defined in the future.

Trailer

The Trailer general field value indicates that the given set of header fields is

present in the trailer of a message encoded with chunked transfer-coding.

Following is the syntax of Trailer header field:

Trailer : field-name

Message header fields listed in the Trailer header field must not include the

following header fields:

 Transfer-Encoding

 Content-Length

 Trailer

HTTP

36

Transfer-Encoding

The Transfer-Encoding general-header field indicates what type of transformation

has been applied to the message body in order to safely transfer it between the

sender and the recipient. This is not the same as content-encoding because

transfer-encodings are a property of the message, not of the entity-body. The

syntax of Transfer-Encoding header field is as follows:

Transfer-Encoding: chunked

All transfer-coding values are case-insensitive.

Upgrade

The Upgrade general-header allows the client to specify what additional

communication protocols it supports and would like to use if the server finds it

appropriate to switch protocols. For example:

Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

The Upgrade header field is intended to provide a simple mechanism for

transition from HTTP/1.1 to some other, incompatible protocol.

Via

The Via general-header must be used by gateways and proxies to indicate the

intermediate protocols and recipients. For example, a request message could be

sent from an HTTP/1.0 user agent to an internal proxy code-named "fred", which

uses HTTP/1.1 to forward the request to a public proxy at nowhere.com, which

completes the request by forwarding it to the origin server at www.ics.uci.edu.

The request received by www.ics.uci.edu would then have the following Via

header field:

Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

The Upgrade header field is intended to provide a simple mechanism for

transition from HTTP/1.1 to some other, incompatible protocol.

Warning

The Warning general-header is used to carry additional information about the

status or transformation of a message which might not be reflected in the

message. A response may carry more than one Warning header.

Warning : warn-code SP warn-agent SP warn-text SP warn-date

HTTP

37

Client Request Headers

Accept

The Accept request-header field can be used to specify certain media types which

are acceptable for the response. The general syntax is as follows:

Accept: type/subtype [q=qvalue]

Multiple media types can be listed separated by commas and the optional qvalue

represents an acceptable quality level for accept types on a scale of 0 to 1.

Following is an example:

Accept: text/plain; q=0.5, text/html, text/x-dvi; q=0.8, text/x-c

This would be interpreted as text/html and text/x-c and are the preferred

media types, but if they do not exist, then send the text/x-dvi entity, and if

that does not exist, send the text/plain entity.

Accept-Charset

The Accept-Charset request-header field can be used to indicate what character

sets are acceptable for the response. Following is the general syntax:

Accept-Charset: character_set [q=qvalue]

Multiple character sets can be listed separated by commas and the optional

qvalue represents an acceptable quality level for non-preferred character sets on

a scale of 0 to 1. Following is an example:

Accept-Charset: iso-8859-5, unicode-1-1; q=0.8

The special value "*", if present in the Accept-Charset field, matches every

character set and if no Accept-Charset header is present, the default is that

any character set is acceptable.

Accept-Encoding

The Accept-Encoding request-header field is similar to Accept, but restricts the

content-codings that are acceptable in the response. The general syntax is:

Accept-Encoding: encoding types

Examples are as follows:

HTTP

38

Accept-Encoding: compress, gzip

Accept-Encoding:

Accept-Encoding: *

Accept-Encoding: compress;q=0.5, gzip;q=1.0

Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

Accept-Language

The Accept-Language request-header field is similar to Accept, but restricts the

set of natural languages that are preferred as a response to the request. The

general syntax is:

Accept-Language: language [q=qvalue]

Multiple languages can be listed separated by commas and the optional qvalue

represents an acceptable quality level for non-preferred languages on a scale of

0 to 1. Following is an example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

Authorization

The Authorization request-header field value consists of credentials containing

the authentication information of the user agent for the realm of the resource

being requested. The general syntax is:

Authorization : credentials

The HTTP/1.0 specification defines the BASIC authorization scheme, where the

authorization parameter is the string of username:password encoded in base

64. Following is an example:

Authorization: BASIC Z3Vlc3Q6Z3Vlc3QxMjM=

The value decodes into is guest:guest123 where guest is user ID and

guest123 is the password.

Cookie

The Cookie request-header field value contains a name/value pair of information

stored for that URL. Following is the general syntax:

Cookie: name=value

HTTP

39

Multiple cookies can be specified separated by semicolons as follows:

Cookie: name1=value1;name2=value2;name3=value3

Expect

The Expect request-header field is used to indicate that a particular set of server

behaviors is required by the client. The general syntax is:

Expect : 100-continue | expectation-extension

If a server receives a request containing an Expect field that includes an

expectation-extension that it does not support, it must respond with a 417

(Expectation Failed) status.

From

The From request-header field contains an Internet e-mail address for the

human user who controls the requesting user agent. Following is a simple

example:

From: webmaster@w3.org

This header field may be used for logging purposes and as a means for

identifying the source of invalid or unwanted requests.

Host

The Host request-header field is used to specify the Internet host and the port

number of the resource being requested. The general syntax is:

Host : "Host" ":" host [":" port] ;

A host without any trailing port information implies the default port, which is 80.

For example, a request on the origin server for http://www.w3.org/pub/WWW/

would be:

GET /pub/WWW/ HTTP/1.1

Host: www.w3.org

If-Match

The If-Match request-header field is used with a method to make it conditional.

This header requests the server to perform the requested method only if the

given value in this tag matches the given entity tags represented by ETag. The

general syntax is:

HTTP

40

If-Match : entity-tag

An asterisk (*) matches any entity, and the transaction continues only if the

entity exists. Following are possible examples:

If-Match: "xyzzy"

If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

If-Match: *

If none of the entity tags match, or if "*" is given and no current entity exists,

the server must not perform the requested method, and must return a 412

(Precondition Failed) response.

If-Modified-Since

The If-Modified-Since request-header field is used with a method to make it

conditional. If the requested URL has not been modified since the time specified

in this field, an entity will not be returned from the server; instead, a 304 (not

modified) response will be returned without any message-body. The general

syntax of if-modified-since is:

If-Modified-Since : HTTP-date

An example of the field is:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If none of the entity tags match, or if "*" is given and no current entity exists,

the server must not perform the requested method, and must return a 412

(Precondition Failed) response.

If-None-Match

The If-None-Match request-header field is used with a method to make it

conditional. This header requests the server to perform the requested method

only if one of the given value in this tag matches the given entity tags

represented by ETag. The general syntax is:

If-None-Match : entity-tag

An asterisk (*) matches any entity, and the transaction continues only if the

entity does not exist. Following are the possible examples:

If-None-Match: "xyzzy"

HTTP

41

If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

If-None-Match: *

If-Range

The If-Range request-header field can be used with a conditional GET to request

only the portion of the entity that is missing, if it has not been changed, and the

entire entity if it has been changed. The general syntax is as follows:

If-Range : entity-tag | HTTP-date

Either an entity tag or a date can be used to identify the partial entity already

received. For example:

If-Range: Sat, 29 Oct 1994 19:43:31 GMT

Here if the document has not been modified since the given date, the server

returns the byte range given by the Range header, otherwise it returns all of the

new document.

If-Unmodified-Since

The If-Unmodified-Since request-header field is used with a method to make it

conditional. The general syntax is:

If-Unmodified-Since : HTTP-date

If the requested resource has not been modified since the time specified in this

field, the server should perform the requested operation as if the If-Unmodified-

Since header were not present. For example:

If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If the request results in anything other than a 2xx or 412 status, the If-

Unmodified-Since header should be ignored.

Max-Forwards

The Max-Forwards request-header field provides a mechanism with the TRACE

and OPTIONS methods to limit the number of proxies or gateways that can

forward the request to the next inbound server. Here is the general syntax:

Max-Forwards : n

HTTP

42

The Max-Forwards value is a decimal integer indicating the remaining number of

times this request message may be forwarded. This is useful for debugging with

the TRACE method, avoiding infinite loops. For example:

Max-Forwards : 5

The Max-Forwards header field may be ignored for all other methods defined in

the HTTP specification.

Proxy-Authorization

The Proxy-Authorization request-header field allows the client to identify itself

(or its user) to a proxy which requires authentication. Here is the general

syntax:

Proxy-Authorization : credentials

The Proxy-Authorization field value consists of credentials containing the

authentication information of the user agent for the proxy and/or realm of the

resource being requested.

Range

The Range request-header field specifies the partial range(s) of the content

requested from the document. The general syntax is:

Range: bytes-unit=first-byte-pos "-" [last-byte-pos]

The first-byte-pos value in a byte-range-spec gives the byte-offset of the first

byte in a range. The last-byte-pos value gives the byte-offset of the last byte in

the range; that is, the byte positions specified are inclusive. You can specify a

byte-unit as bytes. Byte offsets start at zero. Some simple examples are as

follows:

- The first 500 bytes

Range: bytes=0-499

- The second 500 bytes

Range: bytes=500-999

- The final 500 bytes

Range: bytes=-500

HTTP

43

- The first and last bytes only

Range: bytes=0-0,-1

Multiple ranges can be listed, separated by commas. If the first digit in the

comma-separated byte range(s) is missing, the range is assumed to count from

the end of the document. If the second digit is missing, the range is byte n to

the end of the document.

Referer

The Referer request-header field allows the client to specify the address (URI) of

the resource from which the URL has been requested. The general syntax is as

follows:

Referer : absoluteURI | relativeURI

Following is a simple example:

Referer: http://www.tutorialspoint.org/http/index.htm

If the field value is a relative URI, it should be interpreted relative to

the Request-URI.

TE

The TE request-header field indicates what extension transfer-coding it is willing

to accept in the response and whether or not it is willing to accept trailer fields in

a chunked transfer-coding. Following is the general syntax:

TE : t-codings

The presence of the keyword "trailers" indicates that the client is willing to

accept trailer fields in a chunked transfer-coding and it is specified either of the

ways:

TE: deflate

TE:

TE: trailers, deflate;q=0.5

If the TE field-value is empty or if no TE field is present, then only transfer-

coding is chunked. A message with no transfer-coding is always acceptable.

User-Agent

The User-Agent request-header field contains information about the user agent

originating the request. Following is the general syntax:

HTTP

44

User-Agent : product | comment

Example:

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Server Response Headers

Accept-Ranges

The Accept-Ranges response-header field allows the server to indicate its

acceptance of range requests for a resource. The general syntax is:

Accept-Ranges : range-unit | none

For example, a server that accepts byte-range requests may send:

Accept-Ranges: bytes

Servers that do not accept any kind of range request for a resource may send:

Accept-Ranges: none

This will advise the client not to attempt a range request.

Age

The Age response-header field conveys the sender's estimate of the amount of

time since the response (or its revalidation) was generated at the origin server.

The general syntax is:

Age : delta-seconds

Age values are non-negative decimal integers, representing time in seconds.

Following is a simple example:

Age: 1030

An HTTP/1.1 server that includes a cache must include an Age header field in

every response generated from its own cache.

ETag

The ETag response-header field provides the current value of the entity tag for

the requested variant. The general syntax is:

HTTP

45

ETag : entity-tag

Here are some simple examples:

ETag: "xyzzy"

ETag: W/"xyzzy"

ETag: ""

Location

The Location response-header field is used to redirect the recipient to a location

other than the Request-URI for completion. The general syntax is:

Location : absoluteURI

Following is a simple example:

Location: http://www.tutorialspoint.org/http/index.htm

The Content-Location header field differs from Location in that the Content-

Location identifies the original location of the entity enclosed in the request.

Proxy-Authenticate

The Proxy-Authenticate response-header field must be included as a part of a

407 (Proxy Authentication Required) response. The general syntax is:

Proxy-Authenticate : challenge

Retry-After

The Retry-After response-header field can be used with a 503 (Service

Unavailable) response to indicate how long the service is expected to be

unavailable to the requesting client. The general syntax is:

Retry-After : HTTP-date | delta-seconds

Examples:

Retry-After: Fri, 31 Dec 1999 23:59:59 GMT

Retry-After: 120

HTTP

46

In the latter example, the delay is 2 minutes.

Server

The Server response-header field contains information about the software used

by the origin server to handle the request. The general syntax is:

Server : product | comment

Following is a simple example:

Server: Apache/2.2.14 (Win32)

If the response is being forwarded through a proxy, the proxy application must

not modify the Server response-header.

Set-Cookie

The Set-Cookie response-header field contains a name/value pair of information

to retain for this URL. The general syntax is:

Set-Cookie: NAME=VALUE; OPTIONS

Set-Cookie response header comprises the token Set-Cookie, followed by a

comma-separated list of one or more cookies. Here are the possible values you

can specify as options:

S.N. Options and Description

1 Comment=comment

This option can be used to specify any comment associated with the

cookie.

2 Domain=domain

The Domain attribute specifies the domain for which the cookie is valid.

3 Expires=Date-time

The date the cookie will expire. If it is blank, the cookie will expire when

the visitor quits the browser.

4 Path=path

The Path attribute specifies the subset of URLs to which this cookie

applies.

HTTP

47

5 Secure

It instructs the user agent to return the cookie only under a secure

connection.

Following is an example of a simple cookie header generated by the server:

Set-Cookie: name1=value1,name2=value2; Expires=Wed, 09 Jun 2021 10:18:14

GMT

Vary

The Vary response-header field specifies that the entity has multiple sources and

may therefore vary according to the specified list of request header(s). Following

is the general syntax:

Vary : field-name

You can specify multiple headers separated by commas and a value of asterisk

"*" signals that unspecified parameters are not limited to the request-headers.

Following is a simple example:

Vary: Accept-Language, Accept-Encoding

Here field names are case-insensitive.

WWW-Authenticate

The WWW-Authenticate response-header field must be included in 401

(Unauthorized) response messages. The field value consists of at least one

challenge that indicates the authentication scheme(s) and parameters applicable

to the Request-URI. The general syntax is:

WWW-Authenticate : challenge

WWW-Authenticate field value might contain more than one challenge, or if

more than one WWW-Authenticate header field is provided, the contents of a

challenge itself can contain a comma-separated list of authentication

parameters. Following is a simple example:

WWW-Authenticate: BASIC realm="Admin"

HTTP

48

Entity Headers

Allow

The Allow entity-header field lists the set of methods supported by the resource

identified by the Request-URI. The general syntax is:

Allow : Method

You can specify multiple methods separated by commas. Following is a simple

example:

Allow: GET, HEAD, PUT

This field cannot prevent a client from trying other methods.

Content-Encoding

The Content-Encoding entity-header field is used as a modifier to the media-

type. The general syntax is:

Content-Encoding : content-coding

The content-coding is a characteristic of the entity identified by the Request-URI.

Following is a simple example:

Content-Encoding: gzip

If the content-coding of an entity in a request message is not acceptable to the

origin server, the server should respond with a status code of 415 (Unsupported

Media Type).

Content-Language

The Content-Language entity-header field describes the natural language(s) of

the intended audience for the enclosed entity. Following is the general syntax:

Content-Language : language-tag

Multiple languages may be listed for content that is intended for multiple

audiences. Following is a simple example:

Content-Language: mi, en

The primary purpose of Content-Language is to allow a user to identify and

differentiate entities according to the user's own preferred language.

HTTP

49

Content-Length

The Content-Length entity-header field indicates the size of the entity-body, in

decimal number of OCTETs, sent to the recipient or, in the case of the HEAD

method, the size of the entity-body that would have been sent, had the request

been a GET. The general syntax is:

Content-Length : DIGITS

Following is a simple example:

Content-Length: 3495

Any Content-Length greater than or equal to zero is a valid value.

Content-Location

The Content-Location entity-header field may be used to supply the resource

location for the entity enclosed in the message when that entity is accessible

from a location separate from the requested resource's URI. The general syntax

is:

Content-Location: absoluteURI | relativeURI

Following is a simple example:

Content-Location: http://www.tutorialspoint.org/http/index.htm

The value of Content-Location also defines the base URI for the entity.

Content-MD5

The Content-MD5 entity-header field may be used to supply an MD5 digest of the

entity for checking the integrity of the message upon receipt. The general syntax

is:

Content-MD5 : md5-digest using base64 of 128 bit MD5 digest as per RFC

1864

Following is a simple example:

Content-MD5 : 8c2d46911f3f5a326455f0ed7a8ed3b3

The MD5 digest is computed based on the content of the entity-body, including

any content-coding that has been applied, but not including any transfer-

encoding applied to the message-body.

HTTP

50

Content-Range

The Content-Range entity-header field is sent with a partial entity-body to

specify where in the full entity-body the partial body should be applied. The

general syntax is:

Content-Range : bytes-unit SP first-byte-pos "-" last-byte-pos

Examples of byte-content-range-spec values, assuming that the entity contains

a total of 1234 bytes:

- The first 500 bytes:

Content-Range : bytes 0-499/1234

- The second 500 bytes:

Content-Range : bytes 500-999/1234

- All except for the first 500 bytes:

Content-Range : bytes 500-1233/1234

- The last 500 bytes:

Content-Range : bytes 734-1233/1234

When an HTTP message includes the content of a single range, this content is

transmitted with a Content-Range header, and a Content-Length header showing

the number of bytes actually transferred. For example,

HTTP/1.1 206 Partial content

Date: Wed, 15 Nov 1995 06:25:24 GMT

Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT

Content-Range: bytes 21010-47021/47022

Content-Length: 26012

Content-Type: image/gif

Content-Type

The Content-Type entity-header field indicates the media type of the entity-body

sent to the recipient or, in the case of the HEAD method, the media type that

would have been sent, had the request been a GET. The general syntax is:

HTTP

51

Content-Type : media-type

Following is an example:

Content-Type: text/html; charset=ISO-8859-4

Expires

The Expires entity-header field gives the date/time after which the response is

considered stale. The general syntax is:

Expires : HTTP-date

Following is an example:

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Last-Modified

The Last-Modified entity-header field indicates the date and time at which the

origin server believes the variant was last modified. The general syntax is:

Last-Modified: HTTP-date

Following is an example:

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

HTTP

52

HTTP is typically used for distributed information systems, where performance

can be improved by the use of response caches. The HTTP/1.1 protocol includes

a number of elements intended to make caching work.

The goal of caching in HTTP/1.1 is to eliminate the need to send requests in

many cases, and to eliminate the need to send full responses in many other

cases.

The basic cache mechanisms in HTTP/1.1 are implicit directives to caches where

server-specifies expiration times and validators. We use the Cache-

Control header for this purpose.

The Cache-Control header allows a client or server to transmit a variety of

directives in either requests or responses. These directives typically override the

default caching algorithms. The caching directives are specified in a comma-

separated list. For example:

Cache-control: no-cache

The following cache request directives can be used by the client in its HTTP

request:

S.N. Cache Request Directive and Description

1 no-cache

A cache must not use the response to satisfy a subsequent request

without successful re-validation with the origin server.

2 no-store

The cache should not store anything about the client request or server

response.

3 max-age = seconds

Indicates that the client is willing to accept a response whose age is not

greater than the specified time in seconds.

4 max-stale [= seconds]

Indicates that the client is willing to accept a response that has

exceeded its expiration time. If seconds are given, it must not be

expired by more than that time.

9. CACHING

HTTP

53

5 min-fresh = seconds

Indicates that the client is willing to accept a response whose freshness

lifetime is not less than its current age plus the specified time in

seconds.

6 no-transform

Does not convert the entity-body.

7 only-if-cached

Does not retrieve new data. The cache can send a document only if it is

in the cache, and should not contact the origin-server to see if a newer

copy exists.

The following cache response directives can be used by the server in its HTTP

response:

S.N. Cache Request Directive and Description

1 public

Indicates that the response may be cached by any cache.

2 private

Indicates that all or part of the response message is intended for a

single user and must not be cached by a shared cache.

3 no-cache

A cache must not use the response to satisfy a subsequent request

without successful re-validation with the origin server.

4 no-store

The cache should not store anything about the client request or server

response.

5 no-transform

Does not convert the entity-body.

6 must-revalidate

The cache must verify the status of stale documents before using it and

expired ones should not be used.

HTTP

54

7 proxy-revalidate

The proxy-revalidate directive has the same meaning as the must-

revalidate directive, except that it does not apply to non-shared user

agent caches.

8 max-age = seconds

Indicates that the client is willing to accept a response whose age is not

greater than the specified time in seconds.

9 s-maxage = seconds

The maximum age specified by this directive overrides the maximum

age specified by either the max-age directive or the Expires header. The

s-maxage directive is always ignored by a private cache.

HTTP

55

HTTP URLs can only be sent over the Internet using the ASCII character-set,

which often contain characters outside the ASCII set. So these unsafe characters

must be replaced with a % followed by two hexadecimal digits.

The following table shows the ASCII symbols of the characters and their

replacements which can be used in the URL before passing it to the server:

ASCII Symbol Replacement

< 32 Encode with %xx where xx is the hexadecimal

representation of the character.

32 space + or %20

33 ! %21

34 " %22

35 # %23

36 $ %24

37 % %25

38 & %26

39 ' %27

40 (%28

41) %29

42 * *

43 + %2B

10. URL ENCODING

HTTP

56

44 , %2C

45 - -

46 . .

47 / %2F

48 0 0

49 1 1

50 2 2

51 3 3

52 4 4

53 5 5

54 6 6

55 7 7

56 8 8

57 9 9

58 : %3A

59 ; %3B

60 < %3C

61 = %3D

62 > %3E

HTTP

57

63 ? %3F

64 @ %40

65 A A

66 B B

67 C C

68 D D

69 E E

70 F F

71 G G

72 H H

73 I I

74 J J

75 K K

76 L L

77 M M

78 N N

79 O O

80 P P

81 Q Q

HTTP

58

82 R R

83 S S

84 T T

85 U U

86 V V

87 W W

88 X X

89 Y Y

90 Z Z

91 [%5B

92 \ %5C

93] %5D

94 ^ %5E

95 _ _

96 ` %60

97 a a

98 b b

99 c c

100 d d

HTTP

59

101 e e

102 f f

103 g g

104 h h

105 i i

106 j j

107 k k

108 l l

109 m m

110 n n

111 o o

112 p p

113 q q

114 r r

115 s s

116 t t

117 u u

118 v v

119 w w

HTTP

60

120 x x

121 y y

122 z z

123 { %7B

124 | %7C

125 } %7D

126 ~ %7E

127 %7F

> 127 Encode with %xx where xx is the hexadecimal

representation of the character.

HTTP

61

HTTP is used for communications over the internet, so application developers,

information providers, and users should be aware of the security limitations in

HTTP/1.1. This discussion does not include definitive solutions to the problems

mentioned here, but it does make some suggestions for reducing security risks.

Personal Information Leakage

HTTP clients are often privy to large amount of personal information such as the

user's name, location, mail address, passwords, encryption keys, etc. So you

should be very careful to prevent unintentional leakage of this information via

the HTTP protocol to other sources.

 All the confidential information should be stored at the server in encrypted

form.

 Revealing the specific software version of the server might allow the

server machine to become more vulnerable to attacks against software

that is known to contain security holes.

 Proxies that serve as a portal through a network firewall should take

special precautions regarding the transfer of header information that

identifies the hosts behind the firewall.

 The information sent in the ‘From’ field might conflict with the user's

privacy interests or their site's security policy, and hence, it should not be

transmitted without the user being able to disable, enable, and modify the

contents of the field.

 Clients should not include a Referer header field in a (non-secure) HTTP

request, if the referring page was transferred with a secure protocol.

 Authors of services that use the HTTP protocol should not use GET based

forms for the submission of sensitive data, because it will cause the data

to be encoded in the Request-URI.

File and Path Names Based Attack

The document should be restricted to the documents returned by HTTP requests

to be only those that were intended by the server administrators.

For example, UNIX, Microsoft Windows, and other operating systems use '..' as a

path component to indicate a directory level above the current one. On such a

system, an HTTP server MUST disallow any such construct in the Request-URI, if

11. SECURITY

HTTP

62

it would otherwise allow access to a resource outside those intended to be

accessible via the HTTP server.

DNS Spoofing

Clients using HTTP rely heavily on the Domain Name Service, and are thus

generally prone to security attacks based on the deliberate mis-association of IP

addresses and DNS names. So clients need to be cautious in assuming the

continuing validity of an IP number/DNS name association.

If HTTP clients cache the results of host name lookups in order to achieve a

performance improvement, they must observe the TTL information reported by

the DNS. If HTTP clients do not observe this rule, they could be spoofed when a

previously-accessed server's IP address changes.

Location Headers and Spoofing

If a single server supports multiple organizations that do not trust one another,

then it MUST check the values of Location and Content-Location headers in the

responses that are generated under the control of said organizations to make

sure that they do not attempt to invalidate resources over which they have no

authority.

Authentication Credentials

Existing HTTP clients and user agents typically retain authentication information

indefinitely. HTTP/1.1 does not provide a method for a server to direct clients to

discard these cached credentials which is a big security risk.

There are a number of workarounds to the parts of this problem, and so it is

recommended to make the use of password protection in screensavers, idle

time-outs, and other methods that mitigate the security problems inherent in

this problem.

Proxies and Caching

HTTP proxies are men-in-the-middle, and represent an opportunity for man-in-

the-middle attacks. Proxies have access to security-related information, personal

information about individual users and organizations, and proprietary

information belonging to users and content providers.

Proxy operators should protect the systems on which proxies run, as they would

protect any system that contains or transports sensitive information.

Caching proxies provide additional potential vulnerabilities, since the contents of

the cache represent an attractive target for malicious exploitation. Therefore,

cache contents should be protected as sensitive information.

HTTP

63

Example 1

HTTP request to fetch hello.htm page from the web server running

on tutorialspoint.com.

Client request

GET /hello.htm HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Server response

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

Content-Length: 88

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Hello, World!</h1>

</body>

</html>

12. MESSAGE EXAMPLES

HTTP

64

Example 2

HTTP request to fetch t.html page that does not exist on the web server running

on tutorialspoint.com.

Client request

GET /t.html HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Server response

HTTP/1.1 404 Not Found

Date: Sun, 18 Oct 2012 10:36:20 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 230

Content-Type: text/html; charset=iso-8859-1

Connection: close

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head>

 <title>404 Not Found</title>

</head>

<body>

 <h1>Not Found</h1>

 <p>The requested URL /t.html was not found on this server.</p>

</body>

</html>

HTTP

65

Example 3

HTTP request to fetch hello.htm page from the web server running

on tutorialspoint.com, but the request goes with an incorrect HTTP version:

Client request

GET /hello.htm HTTP1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Server response

HTTP/1.1 400 Bad Request

Date: Sun, 18 Oct 2012 10:36:20 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 230

Content-Type: text/html; charset=iso-8859-1

Connection: close

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head>

 <title>400 Bad Request</title>

</head>

<body>

 <h1>Bad Request</h1>

 <p>Your browser sent a request that this server could not understand.<p>

 <p>The request line contained invalid characters following the

 protocol string.<p>

</body>

</html>

HTTP

66

Example 4

HTTP request to post form data to process.cgi CGI page on a web server

running on tutorialspoint.com. The server returns the passed name after setting

them as cookies:

Client request

POST /cgi-bin/process.cgi HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.tutorialspoint.com

Content-Type: text/xml; charset=utf-8

Content-Length: 60

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

first=Zara&last=Ali

Server response

HTTP/1.1 200 OK

Date: Mon, 27 Jul 2009 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Content-Length: 88

Set-Cookie: first=Zara,last=Ali;domain=tutorialspoint.com;Expires=Mon,

19-

Nov-2010 04:38:14 GMT;Path=/

Content-Type: text/html

Connection: Closed

<html>

<body>

<h1>Hello Zara Ali</h1>

</body>

</html>

