

About the tutorial

DTD Tutorial

Tutorial

DTD Tutorial

2

Simply Easy Learning

DTD Tutorial

3

About the tutorial

DTD Tutorial
XML Document Type Declaration commonly known as DTD is a way to describe

precisely the XML language. DTDs check the validity of, structure and vocabulary

of an XML document against the grammatical rules of the appropriate XML

language.

This tutorial will teach you basics of DTD. Tutorial contains chapters discussing all

the basic components of DTD with suitable examples.

Audience
This reference has been prepared for the beginners to help them to understand

the basic concepts related to DTD. This tutorial will give you enough understanding

on DTD from where you can take yourself to a higher level of expertise.

Prerequisites
Before proceeding with this tutorial you should have basic knowledge of XML,

HTML and Javascript.

Copyright & Disclaimer Notice
All the content and graphics on this tutorial are the property of

tutorialspoint.com. Any content from tutorialspoint.com or this tutorial may not

DTD Tutorial

4

be redistributed or reproduced in any way, shape, or form without the written

permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no

guarantee regarding the accuracy of the site or its contents including this tutorial.

If you discover that the tutorialspoint.com site or this tutorial content contains

some errors, please contact us at webmaster@tutorialspoint.com.

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

DTD Tutorial

5

Table of Contents

DTD - OVERVIEW .. 7

TYPES .. 8

FEATURES ... 8

ADVANTAGES OF USING DTD .. 9

DISADVANTAGES OF USING DTD .. 9

DTD - SYNTAX .. 10

SYNTAX .. 10

INTERNAL DTD ... 10

Syntax .. 10

Example ... 11

Rules .. 12

EXTERNAL DTD ... 12

Syntax .. 12

Example ... 12

Types ... 13

DTD - COMPONENTS .. 14

ELEMENTS .. 14

Example ... 14

ATTRIBUTES .. 14

Example ... 15

ENTITIES .. 15

DTD - ELEMENTS .. 16

SYNTAX .. 16

ELEMENT CONTENT TYPES .. 16

Empty Content... 17

Element Content .. 17

List of Operators and Syntax Rules ... 18

Mixed Element Content ... 20

ANY Element Content .. 21

DTD - ATTRIBUTES .. 22

SYNTAX .. 22

EXAMPLE ... 23

RULES OF ATTRIBUTE DECLARATION ... 23

ATTRIBUTE TYPES .. 24

DTD Tutorial

6

ATTRIBUTE VALUE DECLARATION ... 25

Default Values ... 25

FIXED Values .. 26

REQUIRED values .. 26

IMPLIED Values ... 27

DTD - ENTITIES ... 29

ENTITY DECLARATION SYNTAX ... 29

Internal Entity.. 29

External Entity ... 30

BUILT-IN ENTITIES .. 31

Example ... 32

CHARACTER ENTITIES .. 32

Example ... 32

GENERAL ENTITIES ... 32

Syntax .. 32

Example ... 33

PARAMETER ENTITIES ... 33

Syntax .. 33

Example ... 33

DTD - VALIDATION ... 35

DTD Tutorial

7

DTD - Overview
XML Document Type Declaration, commonly known as DTD, is a way to describe

precisely the XML language. DTDs check the validity of structure and vocabulary

of an XML document against the grammatical rules of the appropriate XML

language.

An XML document can be defined as:

 Well-formed: If the XML document adheres to all the general XML rules

such as tags must be properly nested, opening and closing tags must be

balanced, and empty tags must end with '/>', then it is called as well-

formed.

OR

 Valid: An XML document is said to be valid when it is not only well-formed,

but it also conforms to available DTD that specifies which tags it uses, what

attributes those tags can contain, and which tags can occur inside other

tags.

The following diagram represents that a DTD is used to structure the XML

document:

1

CHAPTER

DTD Tutorial

8

Types
DTD can be classified on its declaration basis in the XML document such as:

 Internal DTD

 External DTD

When a DTD is declared within the file it is called Internal DTD and if it is declared

in a separate file it is called External DTD.

We will learn more about these in the chapter DTD Syntax

Features
Following are some important points that a DTD describes:

 the elements that can appear in an XML document.

http://www.tutorialspoint.com/dtd/dtd_syntax

DTD Tutorial

9

 the order in which they can appear.

 optional and mandatory elements.

 element attributes and whether they are optional or mandatory.

 whether attributes can have default values.

Advantages of using DTD
 Documentation - You can define your own format for the XML files.

Looking at this document a user/developer can understand the structure of

the data.

 Validation - It gives a way to check the validity of XML files by checking

whether the elements appear in the right order, mandatory elements and

attributes are in place, the elements and attributes have not been inserted

in an incorrect way, and so on.

Disadvantages of using DTD
 It does not support namespaces. Namespaces is a mechanism by which

element and attribute names can be assigned to groups. However, in a

DTD namespaces have to be defined within the DTD, which violates the
purpose of using namespaces.

 It supports only the text string data type.

 It is not object oriented. Hence, the concept of inheritance cannot be
applied on the DTDs.

 Limited possibilities to express the cardinality for elements.

DTD Tutorial

10

DTD - Syntax
An XML DTD can be either specified inside the document, or it can be kept in a

separate document and then the document can be linked to the DTD document to

use it.

Syntax
Basic syntax of a DTD is as follows:

<!DOCTYPE element DTD identifier

[

 declaration1

 declaration2

]>

In the above syntax

 DTD starts with <!DOCTYPE delimiter.

 An element tells the parser to parse the document from the specified root
element.

 DTD identifier is an identifier for the document type definition, which
may be the path to a file on the system or URL to a file on the internet. If

the DTD is pointing to external path, it is called external subset.

 The square brackets [] enclose an optional list of entity declarations
called internal subset.

Internal DTD
A DTD is referred as an internal DTD if elements are declared within the XML files.

To reference it as internal DTD, standalone attribute in XML declaration must be

set to yes. This means the declaration works independent of external source.

Syntax

The syntax of internal DTD is as shown:

2

CHAPTER

DTD Tutorial

11

<!DOCTYPE root-element [element-declarations]>

where root-element is the name of root element and element-declarations is where

you declare the elements.

Example

Following is a simple example of internal DTD:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

Let us go through the above code:

Start Declaration - Begin the XML declaration with following statement

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

DTD - Immediately after the XML header, the document type declaration follows,

commonly referred to as the DOCTYPE:

<!DOCTYPE address [

The DOCTYPE declaration has an exclamation mark (!) at the start of the element

name. The DOCTYPE informs the parser that a DTD is associated with this XML

document.

DTD Body - The DOCTYPE declaration is followed by body of the DTD, where you

declare elements, attributes, entities, and notations:

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone_no (#PCDATA)>

Several elements are declared here that make up the vocabulary of the <name>

document. <!ELEMENT name (#PCDATA)> defines the element name to be of type

"#PCDATA". Here #PCDATA means parse-able text data.

DTD Tutorial

12

End Declaration - Finally, the declaration section of the DTD is closed using a

closing bracket and a closing angle bracket (]>). This effectively ends the

definition, and thereafter, the XML document follows immediately.

Rules
 The document type declaration must appear at the start of the document

(preceded only by the XML header) — it is not permitted anywhere else
within the document.

 Similar to the DOCTYPE declaration, the element declarations must start
with an exclamation mark.

 The Name in the document type declaration must match the element type
of the root element.

External DTD
In external DTD elements are declared outside the XML file. They are accessed by

specifying the system attributes which may be either the legal .dtd file or a valid

URL. To reference it as external DTD, standalone attribute in the XML declaration

must be set as no. This means, declaration includes information from the external

source.

Syntax

Following is the syntax for external DTD:

<!DOCTYPE root-element SYSTEM "file-name">

where file-name is the file with .dtd extension.

Example

The following example shows external DTD usage:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

The content of the DTD file address.dtd are as shown:

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

DTD Tutorial

13

Types

You can refer to an external DTD by either using system identifiers or public

identifiers.

System Identifiers

A system identifier enables you to specify the location of an external file containing

DTD declarations. Syntax is as follows:

<!DOCTYPE name SYSTEM "address.dtd" [...]>

As you can see it contains keyword SYSTEM and a URI reference pointing to the

location of the document.

Public Identifiers

Public identifiers provide a mechanism to locate DTD resources and are written as

below:

<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Address Example//EN">

As you can see, it begins with keyword PUBLIC, followed by a specialized identifier.

Public identifiers are used to identify an entry in a catalog. Public identifiers can

follow any format, however, a commonly used format is called Formal Public

Identifiers, or FPIs.

DTD Tutorial

14

DTD - Components
This chapter will discuss about XML Components from DTD perspective. A DTD will

basically contain declarations of the following XML components:

 Element

 Attributes

 Entities

Elements
XML elements can be defined as building blocks of an XML document. Elements

can behave as a container to hold text, elements, attributes, media objects or mix

of all.

Each XML document contains one or more elements, the boundaries of which are

either delimited by start-tags and end-tags, or empty elements.

Example

Below is a simple example of XML elements

<name>Tutorials Point</name>

As you can see we have defined a <name> tag. There's a text between start and

end tag of <name>. Elements, when used in an XML-DTD, need to be declared

which will be discussed in detail in the chapter DTD Elements.

Attributes
Attributes are part of the XML elements. An element can have any number of

unique attributes. Attributes give more information about the XML element or

more precisely it defines a property of the element. An XML attribute is always

a name-value pair.

3

CHAPTER

http://www.tutorialspoint.com/dtd_elements

DTD Tutorial

15

Example

Below is a simple example of XML attributes:

Here img is the element name whereas src is an attribute name and flower.jpg is a

value given for the attribute src.

If attributes are used in an XML DTD then these need to be declared which will be

discussed in detail in the chapter DTD Attributes

Entities
Entities are placeholders in XML. These can be declared in the document prolog or

in a DTD. Entities can be primarily categorized as:

 Built-in entities

 Character entities

 General entities

 Parameter entities

There are five built-in entities that play in well-formed XML, they are:

 ampersand: &

 Single quote: '

 Greater than: >

 Less than: <

 Double quote: "

We will study more about entity declarations in XML DTD in detail in the

chapter DTD Entities

http://www.tutorialspoint.com/dtd_attributes
http://www.tutorialspoint.com/dtd/dtd_entities

DTD Tutorial

16

DTD - Elements
XML elements can be defined as building blocks of an XML document. Elements

can behave as a container to hold text, elements, attributes, media objects or mix

of all.

A DTD element is declared with an ELEMENT declaration. When an XML file is

validated by DTD, parser initially checks for the root element and then the child

elements are validated.

Syntax
All DTD element declarations have this general form:

<!ELEMENT elementname (content)>

 ELEMENT declaration is used to indicate the parser that you are about to

define an element.

 elementname is the element name (also called the generic identifier) that

you are defining.

 content defines what content (if any) can go within the element.

Element Content Types
Content of elements declaration in a DTD can be categorized as below:

 Empty content

 Element content

 Mixed content

 Any content

4

CHAPTER

DTD Tutorial

17

Empty Content

This is a special case of element declaration. This element declaration does not

contain any content. These are declared with the keyword EMPTY.

Syntax

Following is the syntax for empty element declaration:

<!ELEMENT elementname EMPTY >

In the above syntax:

 ELEMENT is the element declaration of category EMPTY

 elementname is the name of empty element.

Example

Following is a simple example demonstrating empty element declaration:

<?xml version="1.0"?>

<!DOCTYPE hr[

 <!ELEMENT address EMPTY>

]>

<address />

In this example address is declared as an empty element. The markup for address

element would appear as <address />.

Element Content

In element declaration with element content, the content would be allowable

elements within parentheses. We can also include more than one element.

Syntax

Following is a syntax of element declaration with element content:

<!ELEMENT elementname (child1, child2...)>

 ELEMENT is the element declaration tag

 elementname is the name of the element.

 child1, child2.. are the elements and each element must have its own

definition within the DTD.

Example

Below example demonstrates a simple example for element declaration with

element content:

DTD Tutorial

18

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

In the above example, address is the parent element

and name, company and phone_no are its child elements.

List of Operators and Syntax Rules

Below table shows the list of operators and syntax rules which can be applied in

defining child elements:

Operator Syntax Description Example

+

<!ELEMENT

element-name

(child1+)>

It indicates that

child element

can occur one or

more times

inside parent

element.

<!ELEMENT address (name+)>

Child element name can occur

one or more times inside the

element name address.

*

<!ELEMENT

element-name

(child1*)>

It indicates that

child element

can occur zero

or more times

inside parent

element.

<!ELEMENT address (name*)>

Child element name can occur

zero or more times inside the

element name address.

?

<!ELEMENT

element-name

(child1?)>

It indicates that

child element

can occur zero

or one time

inside parent

element.

<!ELEMENT address (name?)>

Child element name can occur

zero or one time inside the

element name address.

DTD Tutorial

19

,

<!ELEMENT

element-name

(child1,

child2)>

It gives

sequence of

child elements

separated by

comma which

must be included

in the element-

name.

<!ELEMENT address (name,

company)>

Sequence of child elements

name, company, which must

occur in the same order inside

the element name address.

|

<!ELEMENT

element-name

(child1 |

child2)>

It allows making

choices in the

child element.

<!ELEMENT address (name |

company)>

It allows you to choose either of

child elements i.e. name or

company, which must occur

inside the element name

address.

Rules

We need to follow certain rules if there is more than one element content:

 Sequences - Often the elements within DTD documents must appear in a

distinct order. If this is the case, you define the content using a sequence.

For example:

<!ELEMENT address (name,company,phone)>

The declaration indicates that the <address> element must have exactly

three children — <name>, <company>, and <phone> — and that they

must appear in this order.

 Choices: Suppose you need to allow one element or another, but not both.

In such cases you must use the pipe (|) character. The pipe functions as an

exclusive OR. For example:

<!ELEMENT address (mobile | landline)>

DTD Tutorial

20

Mixed Element Content

This is the combination of (#PCDATA) and children elements. PCDATA stands for

parsed character data, that is, text that is not markup. Within mixed content

models, text can appear by itself or it can be interspersed between elements. The

rules for mixed content models are similar to the element content as discussed in

the previous section.

Syntax

Following is a generic syntax for mixed element content:

<!ELEMENT elementname (#PCDATA|child1|child2)*>

 ELEMENT is the element declaration tag.

 elementname is the name of the element.

 PCDATA is the text that is not markup. #PCDATA must come first in the

mixed content declaration.

 child1, child2.. are the elements and each element must have its own

definition within the DTD.

 The operator (*) must follow the mixed content declaration if children

elements are included.

 The (#PCDATA) and child element declarations must be separated by the

(|) operator.

Example

Following is a simple example demonstrating the mixed content element

declaration in a DTD.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (#PCDATA|name)*>

 <!ELEMENT name (#PCDATA)>

]>

<address>

 Here's a bit of text mixed up with the child element.

 <name>Tanmay Patil</name>

</address>

DTD Tutorial

21

ANY Element Content

You can declare an element using the ANY keyword in the content. It is most often

referred to as mixed category element. ANY is useful when you have yet to decide

the allowable contents of the element.

Syntax

Following is the syntax for declaring elements with ANY content:

<!ELEMENT elementname ANY>

Here, the ANY keyword indicates that text (PCDATA) and/or any elements declared

within the DTD can be used within the content of the <elementname> element.

They can be used in any order any number of times. However, the ANY keyword

does not allow you to include elements that are not declared within the DTD.

Example

Following is a simple example demonstrating the element declaration with ANY

content:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address ANY>

]>

<address>

 Here's a bit of sample text

</address>

DTD Tutorial

22

DTD - Attributes
In this chapter we will discuss about DTD Attributes. Attribute gives more

information about an element or more precisely it defines a property of an

element. An XML attribute is always a name-value pair. An element can have any

number of unique attributes.

Attribute declaration is very much similar to element declaration in many ways

except one; instead of declaring allowable content for elements, you declare a list

of allowable attributes for each element. These lists are called ATTLIST

declaration.

Syntax
Basic syntax of DTD attribute declaration is as follows:

<!ATTLIST element-name attribute-name attribute-type attribute-value>

In the above syntax

 The DTD attributes start with <!ATTLIST delimiter if the element contains

the attribute.

 element-name specifies the name of the element to which the attribute

applies.

 attribute-name specifies the name of the attribute which is included with

the element-name.

 attribute-type defines the type of attribute. We will discuss more on this

in the following sections.

 attribute-value takes a fixed value that the attributes must define. We will

discuss more on this in the following sections.

5

CHAPTER

DTD Tutorial

23

Example
Below is a simple example for attribute declaration in DTD:

<?xml version = "1.0"?>

<!DOCTYPE address [

<!ELEMENT address (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id CDATA #REQUIRED>

]>

<address>

 <name id="123">Tanmay Patil</name>

</address>

Let us go through the above code:

 Begin with the XML declaration with the following statement:

<?xml version = "1.0"?>

 Immediately following the XML header is the document type declaration,
commonly referred to as the DOCTYPE:

<!DOCTYPE address [

The DOCTYPE informs the parser that a DTD is associated with this XML
document. The DOCTYPE declaration has an exclamation mark (!) at the

start of the element name.

 Following is the body of DTD. Here we have declared element and
attribute:

<!ELEMENT address (name)>

<!ELEMENT name (#PCDATA)>

 Attribute id for the element name is defined as:

<!ATTLIST name id CDATA #REQUIRED>

Here attribute type is CDATA and its value is #REQUIRED.

Rules of Attribute Declaration
 All attributes used in an XML document must be declared in the Document

Type Definition (DTD) using an Attribute-List Declaration

 Attributes may only appear in start or empty tags.

 The keyword ATTLIST must be in upper case

 No duplicate attribute names will be allowed within the attribute list for a
given element.

DTD Tutorial

24

Attribute Types
When declaring attributes, you can specify how the processor should handle the

data that appears in the value. We can categorize attribute types in three main

categories:

 String type

 Tokenized types

 Enumerated types

Following table provides a summary of the different attribute types:

Type Description

CDATA
CDATA is character data (text and not markup). It is a String

Attribute Type.

ID
It is a unique identifier of the attribute. It should not appear more

than once. It is a Tokenized Attribute Type.

IDREF

It is used to reference an ID of another element. It is used to

establish connections between elements. It is a Tokenized Attribute

Type.

IDREFS
It is used to reference multiple ID's. It is a Tokenized Attribute

Type.

ENTITY
It represents an external entity in the document. It is a Tokenized

Attribute Type.

ENTITIES
It represents a list of external entities in the document. It is

a Tokenized Attribute Type.

NMTOKEN
It is similar to CDATA and the attribute value consists of a valid

XML name. It is a Tokenized Attribute Type.

NMTOKENS
It is similar to CDATA and the attribute value consists a list of valid

XML name. It is a Tokenized Attribute Type.

DTD Tutorial

25

NOTATION
An element will be referenced to a notation declared in the DTD

document. It is an Enumerated Attribute Type.

Enumeration
It allows defining a specific list of values where one of the values

must match. It is an Enumerated Attribute Type.

Attribute Value Declaration
Within each attribute declaration, you must specify how the value will appear in

the document. You can specify if an attribute:

 can have a default value

 can have a fixed value

 is required

 is implied

Default Values

It contains the default value. The values can be enclosed in single quotes(') or

double quotes(")

Syntax

Following is the syntax of value:

<!ATTLIST element-name attribute-name attribute-type "default-value">

where default-value is the attribute value defined.

Example

Following is a simple example of attribute declaration with default value:

<?xml version = "1.0"?>

<!DOCTYPE address [

<!ELEMENT address (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id CDATA "0">

]>

<address>

 <name id="123">

 Tanmay Patil

 </name>

</address>

In this example we have name element with attribute id whose default value is 0.

The default value is enclosed within the double quotes.

DTD Tutorial

26

FIXED Values

#FIXED keyword followed by the fixed value is used when you want to specify that

the attribute value is constant and cannot be changed. A common use of fixed

attributes is specifying version numbers.

Syntax

Following is the syntax of fixed values:

<!ATTLIST element-name attribute-name attribute-type #FIXED "value" >

where #FIXED is an attribute value defined.

Example

Following is a simple example of attribute declaration with FIXED value:

<?xml version="1.0"?>

<!DOCTYPE address [

 <!ELEMENT address (company)*>

 <!ELEMENT company (#PCDATA)>

 <!ATTLIST company name NMTOKEN #FIXED "tutorialspoint">

]>

<address>

 <company name="tutorialspoint">we are a free online teaching faculty</company>

</address>

In this example we have used the keyword #FIXED where it indicates that the

value "tutorialspoint" is the only value for the attribute name of element

<company>. If we try to change the attribute value then it gives an error.

Following is an invalid DTD:

<?xml version="1.0"?>

<!DOCTYPE address [

 <!ELEMENT address (company)*>

 <!ELEMENT company (#PCDATA)>

 <!ATTLIST company name NMTOKEN #FIXED "tutorialspoint">

]>

<address>

 <company name="abc">we are a free online teaching faculty</company>

</address>

REQUIRED values

Whenever you want specify that an attribute is required, use #REQUIRED

keyword.

Syntax

Following is the syntax of #REQUIRED:

DTD Tutorial

27

<!ATTLIST element-name attribute-name attribute-type #REQUIRED>

where #REQUIRED is an attribute type defined.

Example

Following is a simple example of DTD attribute declaration with #REQUIRED

keyword:

<?xml version = "1.0"?>

<!DOCTYPE address [

<!ELEMENT address (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id CDATA #REQUIRED>

]>

<address>

 <name id="123">

 Tanmay Patil

 </name>

</address>

In this example we have used #REQUIRED keyword to specify that the

attribute id must be provided for the element-name name

IMPLIED Values

When declaring attributes you must always specify a value declaration. If the

attribute you are declaring has no default value, has no fixed value, and is not

required, then you must declare that the attribute as implied. Keyword #IMPLIED

is used to specify an attribute as implied.

Syntax

Following is the syntax of #IMPLIED:

<!ATTLIST element-name attribute-name attribute-type #IMPLIED>

where #IMPLIED is an attribute type defined.

Example

Following is a simple example of #IMPLIED

<?xml version = "1.0"?>

<!DOCTYPE address [

<!ELEMENT address (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id CDATA #IMPLIED>

]>

<address>

 <name />

</address>

DTD Tutorial

28

In this example we have used the keyword #IMPLIED as we do not want to specify

any attributes to be included in element name. It is optional.

DTD Tutorial

29

DTD - Entities
Entities are used to define shortcuts to escape characters within the XML

documents. Entities can be primarily of four types:

 Built-in entities

 Character entities

 General entities

 Parameter entities

Entity Declaration Syntax
In general, entities can be can be declared internally or externally. Let us

understand each of these and their syntax as follows:

Internal Entity

If an entity is declared within a DTD it is called as internal entity.

Syntax

Following is the syntax for internal entity declaration:

<!ENTITY entity_name "entity_value">

In the above syntax:

 entity_name is the name of entity followed by its value within the double

quotes or single quote.

 entity_value holds the value for the entity name.

The entity value of the Internal Entity is de-referenced by adding prefix & to the

entity name i.e. &entity_name.

Example

6

CHAPTER

DTD Tutorial

30

Following is a simple example for internal entity declaration:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE address [

<!ELEMENT address (#PCDATA)>

<!ENTITY name "Tanmay patil">

<!ENTITY company "TutorialsPoint">

<!ENTITY phone_no "(011) 123-4567">

]>

<address>

 &name;

 &company;

 &phone_no;

</address>

In the above example, the respective entity

names name, company and phone_no are replaced by their values in the XML

document. The entity values are de-referenced by adding prefix & to the entity

name.

Save this file as sample.xml and open it in any browser, you will notice that the

entity values for name, company, phone_no are replaced respectively.

External Entity

If an entity is declared outside a DTD it is called as external entity. You can refer

to an external Entity by either using system identifiers or public identifiers.

Syntax

Following is the syntax for External Entity declaration:

<!ENTITY name SYSTEM "URI/URL">

In the above syntax:

 name is the name of entity.

 SYSTEM is the keyword.

 URI/URL is the address of the external source enclosed within the double

or single quotes.

Types

You can refer to an external DTD by either using:

 System Identifiers - A system identifier enables you to specify the

location of an external file containing DTD declarations. Syntax is as follows:

<!DOCTYPE name SYSTEM "address.dtd" [...]>

DTD Tutorial

31

As you can see it contains keyword SYSTEM and a URI reference pointing

to the document's location.

 Public Identifiers - Public identifiers provide a mechanism to locate DTD

resources and are written as below:

<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Address Example//EN">

As you can see, it begins with keyword PUBLIC, followed by a specialized

identifier. Public identifiers are used to identify an entry in a catalog. Public

identifiers can follow any format; however, a commonly used format is

called Formal Public Identifiers, or FPIs.

Example

Let us understand the external entity with the following example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

Below is the content of the DTD file address.dtd:

<!ELEMENT address (name, company, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

Built-in entities
All XML parsers must support built-in entities. In general, you can use these entity

references anywhere. You can also use normal text within the XML document,

such as in element contents and attribute values.

There are five built-in entities that play in well-formed XML, they are:

 ampersand: &

 Single quote: '

 Greater than: >

 Less than: <

 Double quote: "

DTD Tutorial

32

Example

Following example demonstrates the built-in entity declaration:

<?xml version="1.0"?>

<note>

 <description>I'm a technical writer & programmer</description>

<note>

As you can see here the & character is replaced by & whenever the processor

encounters this.

Character entities
Character Entities are used to name some of the entities which are symbolic

representation of information i.e characters that are difficult or impossible to type

can be substituted by Character Entities.

Example

Following example demonstrates the character entity declaration:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE author[

<!ELEMENT author (#PCDATA)>

<!ENTITY writer "Tanmay patil">

<!ENTITY copyright "©">

]>

<author>&writer;©right;</author>

You will notice here we have used © as value for copyright character. Save

this file as sample.xml and open it in your browser and you will see that copyright

is replaced by the character ©.

General entities
General entities must be declared within the DTD before they can be used within

an XML document. Instead of representing only a single character, general entities

can represent characters, paragraphs, and even entire documents.

Syntax

To declare a general entity, use a declaration of this general form in your DTD:

<!ENTITY ename "text">

DTD Tutorial

33

Example

Following example demonstrates the general entity declaration:

<?xml version="1.0"?>

<!DOCTYPE note [

<!ENTITY source-text "tutorialspoint">

]>

<note>

&source-text;

</note>

Whenever an XML parser encounters a reference to source-text entity, it will

supply the replacement text to the application at the point of the reference.

Parameter entities
The purpose of a parameter entity is to enable you to create reusable sections of

replacement text.

Syntax

Following is the syntax for parameter entity declaration:

<!ENTITY % ename "entity_value">

 entity_value is any character that is not an '&', '%' or ' " '.

Example

Following example demonstrates the parameter entity declaration. Suppose you

have element declarations as below:

<!ELEMENT residence (name, street, pincode, city, phone)>

<!ELEMENT apartment (name, street, pincode, city, phone)>

<!ELEMENT office (name, street, pincode, city, phone)>

<!ELEMENT shop (name, street, pincode, city, phone)>

Now suppose you want to add additional element country, then you need to add

it to all four declarations. Hence we can go for a parameter entity reference. Now

using parameter entity reference the above example will be:

<!ENTITY % area "name, street, pincode, city">

<!ENTITY % contact "phone">

Parameter entities are dereferenced in the same way as a general entity reference,

only with a percent sign instead of an ampersand:

<!ELEMENT residence (%area;, %contact;)>

DTD Tutorial

34

<!ELEMENT apartment (%area;, %contact;)>

<!ELEMENT office (%area;, %contact;)>

<!ELEMENT shop (%area;, %contact;)>

When the parser reads these declarations, it substitutes the entity's replacement

text for the entity reference.

DTD Tutorial

35

DTD - Validation
We use DTD to describe precisely the XML document. DTDs check the

validity of structure and vocabulary of an XML document against the grammatical

rules of the appropriate XML language. Now to check the validity of DTD, following

procedures can be used:

 Using XML DTD validation tools - You can use some IDEs such as XML

Spy (not free) and XMLStarlet(opensource) to validate XML files against

DTD document.

 Using XML DTD on-line validators - W3C Markup Validation Service is

designed to validate Web documents. Use the online validator to check the

validity of your XML DTD here.

 Write your own XML validators with XML DTD validation API: Newer

versions of JDK (above 1.4) support XML DTD validation API. You can write

your own validator code to check the validity of XML DTD validation.

7

CHAPTER

	DTD - Overview
	Types
	Features
	Advantages of using DTD
	Disadvantages of using DTD

	DTD - Syntax
	Syntax
	Internal DTD
	Syntax
	Example
	Rules

	External DTD
	Syntax
	Example
	Types

	DTD - Components
	Elements
	Example

	Attributes
	Example

	Entities

	DTD - Elements
	Syntax
	Element Content Types
	Empty Content
	Element Content
	List of Operators and Syntax Rules
	Mixed Element Content
	ANY Element Content

	DTD - Attributes
	Syntax
	Example
	Rules of Attribute Declaration
	Attribute Types
	Attribute Value Declaration
	Default Values
	FIXED Values
	REQUIRED values
	IMPLIED Values

	DTD - Entities
	Entity Declaration Syntax
	Internal Entity
	External Entity

	Built-in entities
	Example

	Character entities
	Example

	General entities
	Syntax
	Example

	Parameter entities
	Syntax
	Example

	DTD - Validation

