
Page 1Contents

NoSQL issue

A collection of popular NoSQL
articles published on InfoQ.com
• The State of NoSQL

• Introduction to MongoDB for Java, PHP and Python Developers

• CAP Twelve Years Later: How the “Rules” Have Changed

• NoSQL: Past, Present, Future

• Related NoSQL Presentation and Interviews an InfoQ.com

Pilot Issue - May 2013

by

THE

NoSQL eMag

http://www.InfoQ.com

Page 2Contents

The State of NoSQL Pages 3-7
Prof. Dr. Stefan Edlich reviews the current landscape of the NoSQL movement, emphasizing

that demand for NoSQL architectural and development skills is rising. Many NoSQL technolo-

gies have received massive funding, suggesting that much is expected of them. Edlich

also mentions NoSQL books published or to be published, looks at how leaders of the movement

are doing and points out the newcomers.

 Introduction to MongoDB for Java,
PHP and Python Developers Pages 8-25
Rick Hightower makes an argument for NoSQL databases, explaining why they matter and why they

are useful. He continues with an introduction to MongoDB, explaining its shortcomings, tradeoffs

and main concepts, and comparing basic operations with corresponding SQL statements. He also

enters deeper waters addressing replica sets and sharding. The last section of the article is dedicate

to practical guidance for setting up and start using MongoDB for Python, PHP and Java developers.

CAP Twelve Years Later: How the
“Rules” Have Changed Pages 27-32
Prof. Dr. Eric Brewer, the author of CAP Theorem, attempts to clarify some of the misunderstand-

ings surrounding the theorem, especially the idea that one has to choose two of three CAP properties.

A more correct restatement of the theorem is that one cannot have 100% consistency and availability

in the presence of partitions.

NoSQL: Past, Present, Future Pages 33-34
In this session held at QCon San Francisco 2012, Prof. Dr. Eric Brewer takes a look at the history of

NoSQL, tracing its origins in the ’60s with the first pointer-based database. He notes how develop-

ments in data storage and management took two different paths, one following the ACID pre-

requisites and the other building on BASE. Brewer also takes note of the NoSQL developments in

the last decade and the role played by the CAP Theorem he authored.

 Related NoSQL Presentations and
Interviews on InfoQ.com Pages 35

Contents

http://www.InfoQ.com

Page 3Contents

The State
of NoSQL
By Stefan Edlich

After at least four years of tough criticism, it’s time to come

to an intermediate conclusion about the state of NoSQL. So

many things have happened around NoSQL that it is hard to

get an overview and value what goals have been achieved

and spot where NoSQL failed to deliver.

NoSQL has succeeded in fields throughout industry and

academics. Universities are starting to understand that

NoSQL must to be covered by the curriculum. It is simply

not enough to teach database normalization up and down.

This, of course, does not mean that a profound relational

foundation is wrong. To the contrary, NoSQL is certainly a

perfect and important addition.

What happened?
The NoSQL Space has exploded in just five years. The

nosql-database.org list numbers about 150 such databas-

es, including some old but still strong dinosaurs like Object

Databases. Of course, some interesting mergers have hap-

pened, such as the CouchDB and Membase deal that led to

Couchbase.

Many people expected the NoSQL space to consolidate but

this has not happened. The NoSQL space simply exploded

and is still exploding. As with all areas in computer science

- like for example with program- ming languages - more and

more gaps open to allow for a huge number of databases.

This is all in line with the explosion of the Internet, Big Data,

sensors and many more technologies in the future, leading to

more data and different requirements for their treatments.

In the past four years, we saw only one significant system

leaving the stage: the German graph database Sones. The

vast majority of NoSQL databases continue to live happily

either in the open-source space, without any considerable

money turnaround, or in the commercial space.

Visibility and Money
Another important point is visibility and industry adop-

tion. We can see a difference between the old industry

protecting its investment, and a new industry of mostly

startups. While nearly all of the hot web startups such as

Pinterest or Instagram do have a hybrid (SQL + NoSQL)

architecture, old industry is still struggling with NoSQL

adoption. But we do see that more of these older com-

panies are trying to cut a part of their data streams to be

processed and later analyzed with NoSQL solutions like

Hadoop, MongoDB, Cassandra, etc.

And this leads to increased demand for developers and ar-

chitects with NoSQL knowledge. A recent survey showed

the following developer skills requested by the industry:

1. HTML5

2. MongoDB

3. iOS

4. Android

5. Mobile Apps

6. Puppet

7. Hadoop

8. jQuery

9. PaaS

10. Social Media

Two of the top ten technology requirements demand ex-

perience with NoSQL. And even one before iOS. If this

isn’t praise, what is?!

NoSQL adoption is going fast and deep.

In a well-known whitepaper in the summer of 2011, Ora-

cle stated that NoSQL feels like an ice-cream flavor that

you should not get too attached because it may not be

around for too long. Only a few months later, Oracle

showed its Hadoop integration into a Big Data Appli-

ance. And even more, we saw the company launch its own

NoSQL database, which was a revised BerkeleyDB. Since

then, many vendors have been racing to integrate Ha-

doop. Microsoft, Sybase, IBM and many more already

have tight integration. The pattern that can be seen eve-

“NoSQL solutions will be here to stay”

http://www.InfoQ.com

Page 4Contents

rywhere: can’t fight it, embrace it. One of the strongest

signs of broad NoSQL adoption is that NoSQL databases

are getting a PaaS standard. Thanks to the easy setup and

management of many NoSQL databases, databases like

Redis or MongoDB can be seen in dozens of PaaS services

like Cloud-Foundry, OpenShift, dotCloud, etc.

As everything moves into the cloud this NoSQL further

pressures classic relational databases. Having the choice

to select either MySQL/PostGres or MongoDB/Redis, for

example, will force companies to think twice about their

model and requirements, and will raise other important

questions.

An interesting indicator for technologies is the Thought-

Works radar, which always contains interesting stuff even

if you do not fully agree with everything contained within

it. Let’s have a look at their radar from October 2012 in

figure 1:

Figure 1: ThoughtWorks Radar, October, 2012

In their platform quadrant they list five databases:

1. Neo4j (adopt)

2. MongoDB (trial but close to adopt)

3. Riak (trial)

4. Couchbase (trial)

5. Datomic (assess)

At least four of these have received a lot of venture capital.

If you add up all the venture capital in the entire NoSQL

space you will surely count to something in between $100

million and $1 billion! Neo4j received $11 million

in a series-B funding. Other companies that received $10-

30 million in funding include Aerospike, MongoDB and

Couchbase. But let’s have a look at the list again:

Neo4j, MongoDB, Riak and Couchbase have been in this

space for four years and have proven to be market leaders

for specific requirements. The fifth database, Datomic,

is astonishingly a completely new database, with a new

paradigm written by a small team. We will dig into it a bit

later when discussing all databases briefly.

Standards
Many people have asked for NoSQL standards, failing to

see that NoSQL covers a wide range of models and

requirements. Unified languages for major areas such as

Wide Column, Key/Value, Document and Graph Data-

bases will surely not be available for a long time because

it’s impossible to cover all areas. Several approaches, such

as Spring Data, try to add a unified layer but it’s up to the

reader to test whether or not this layer is a leap forward

in building a polyglot persistence environment . The graph

and the document databases have come up with standards

in their own domain. The graph world is more successful

with its tinkerpop blueprints, Gremlin, Sparql, and Cypher.

In the document space, UnQL and jaql fill some niches,

although the first lacks real-world support by a NoSQL

database. But with the force of Hadoop, many projects

are working to bridge famous ETL languages such as Pig

or Hive to other NoSQL databases. The standards world is

highly fragmented, but only because NoSQL covers such a

wide area.

Landscape
One of the best overviews of the database landscape comes

from Matt Aslett in a report of the 451 Group. He recently

updated his picture to give more insight. As you can see in

the following picture, the landscape is highly fragmented

and overlapping. There are several dimensions: Relational

vs. Non-relational; Analytic vs. Operational; NoSQL vs.

NewSQL. The last two categories have the well known

sub-categories Key-Value, Document, Graph and Big Ta-

bles for NoSQL and Storage-Engines, Clustering-Sharding,

New Databases and Cloud Service Solutions. The interest-

ing part of this picture is that it is increasingly difficult to

pin a database to an exact location. Everyone is now trying

fiercely to integrate features from databases found in other

spaces. NewSQL Systems implement core NoSQL features.

NoSQL Systems try more and more to implement “classic”

features such as SQL support or ACID or at least often con-

figurable persistence.

http://www.InfoQ.com

Page 5Contents

Figure 2: The database landscape by Matt Aslett (451 group)

It all started with the integration of Hadoop that tons of

relational databases now offer. But there are many other

examples. For example, MarkLogic is now starting to ride

the JSON wave and thus also is hard to position. Further-

more, more multi-model databases appear, such as Aran-

goDB, OrientDB or AlechemyDB (which is now a part of the

promising Aerospike DB). They allow users to start with one

database model (e.g. document / JSON model) and add other

models (graph or key-value) as new requirements pop up.

Books
Another wonderful sign of maturity is the book

market. After two German books were published in 2010

and 2011, Wiley published Shashank Tiwari’s “Profes-

sional NoSQL,” a book structured like a hurricane and full

of great deep insights. The race continued with two nice

books in 2012. Eric Redmond and Jim Wilson’s “Seven Da-

tabases in Seven Weeks” is surely a masterpiece. Freshly

written and full of practical hands-on insights, it takes six

famous NoSQL databases and adds PostgreSQL to the

mix, making it a top recommendation.

P.J. Sandalage and Martin Fowler take a more holistic ap-

proach to cover all the characteristics and help evaluating

your path and decisions with NoSQL in their “NoSQL Dis-

tilled”. But there is more to come. It is just a matter of time

till a Manning book appears on the scene: Dan McCreary

and Ann Kelly are writing a book called “Making Sense of

NoSQL” and the first MEAP chapters are already available.

After starting with concepts and patterns, their Chapter 3

will surely look attractive:

• Building NoSQL Big Data solutions

• Building NoSQL search solutions

• Building NoSQL high availability solutions

• Using NoSQL to increase agility

This is a fresh approach and will surely be worth reading.

Let’s give each NoSQL leader a quick consideration. As

one of the clear market leaders, Hadoop is a strange ani-

mal. On one hand it has enormous momentum. As men-

tioned before, each classic database vendor is in a hurry to

announce Hadoop support. Companies such as Cloudera

and MapR continue to grow and new Hadoop extensions

and successors are announced every week. Even Hive and

Pig continue to earn acceptance. Nevertheless, there is

a fly in the ointment. Companies still complain about an

unstructured mess (reading and parsing files could be even

faster). MapReduce is “too batch” (even Google goes away

from it), management is still hard, there are stability issues,

and local training/consultants are difficult to find.

It’s still a hot question whether Hadoop will grow as it is or

will change dramatically. The second leader, MongoDB, also

suffers from flame wars, and it might be the nature of things

that leading databases get the most criticism. Nevertheless,

MongoDB goes at a fast pace and criticism mostly is:

• Concerning old versions or

• Due to lack of knowledge.This recently culminated

in absurd complaints that the 32-bit version can only

handle 2GB, although MongoDB states this clearly in the

download section and recommends the 64-bit version.

Anyway, MongoDB’s partnerships and funding rounds

push ambitious roadmaps:

• The industry called for security / LDAP features which

are currently being developed

• Full text search will be in soon

• V8 for MapReduce is coming

• Even a finer level then collection level locking will come

• A Hash Shard Key is on the way

Especially this last point catches the interest of many

architects. MongoDB was often blamed (also by competi-

tors) for not implementing a concise consistent hashing,

which is not entirely correct because such a key can be

easily defined. But in the future there will be a config for

a hash shard key. This means the user must decide if a hash

key for sharding is useful or if he needs some of the (perhaps

even rare) advantages of selecting his own sharding key.

Surely this increases the pressure on other vendors and will

lead to fruitful discussion on when to use a sharding key.

Cassandra is the next in line and doing well, adding

more and nicer features such as better querying. However

rumors won’t stop telling that running a Cassandra clus-

http://www.InfoQ.com

Page 6Contents

ter is not piece of cake and requires some hard work. Cas-

sandra’s most attractive issue is surely DataStax. The new

company on top of Cassandra – and its $25 million round-

C funding - is mostly addressing analytics and some op-

erational issues. Especially the analytics was a surprise for

many because in the early days Cassandra was not known

as a powerful query machine. But as this has changed in

the latest version, the query capabilities may be sufficient

for modern analysis.

The development speed of Redis is also remarkable. De-

spite developer Salvatore Sanfilippo’s assertions that he

would have achieved nothing without the community and

the help of Pieter Noordhuis, it still looks like a stunning

one-man show. The sentinel failover and server-side

scripting with the Lua programming language are the lat-

est achievements. The decision for Lua was a bit of a shock

for the community because everyone integrates JavaS-

cript as a server-side language. Nevertheless, Lua is a neat

language and will help Redis open up a panoply of possibili-

ties. Couchbase also looks like a brilliant solution in terms

of scalability and latency despite the strong winds that

Facebook and hence Zynga are now facing. It’s surely not a

hot query machine but if Couchbase could improve query-

ing in the future the portfolio would be comprehensive.

The merger with the CouchDB founders was definitely a

strong step and it’s worthwhile to see the great influences

of CouchDB in Couchbase. On every database confer-

ence it’s also funny to hear the discussions, if CouchDB is

doing better or worse after Damien, Chris and Jan have

left. One can only hear extreme opinions here. But who

cares as long as the database is doing fine. And it looks like

it is. The last NoSQL databse to be mentioned here is Riak,

which also has improved dramatically in functionality and

monitoring. It continues to have a good reputation mostly

in terms of stability: “rock solid, invisible and good for your

sleep”. The Riak CS fork also looks interesting in terms of

the modularity of this technology.

Interesting Newcomers
Newcomers are always interesting to evaluate. Let’s dig

into some of them. Elastic Search surely is one of the

hottest new NoSQL products and just got $10 million

in series-A funding, and for a good reason. As a scalable

search engine on top of Lucene it brings many advantages,

primarily a company on top providing services and lever-

aging all the achievements that Lucene has conceived in

the last years. It will surely infiltrate the industry, attacking

the big players in the semi-structured information space.

Google has sent its small but fast LevelDB into the field.

And it serves as a basis for many uses with specific re-

quirements such as compression integration, even Riak-in-

tegrated LevelDB. It remains to be seen when all the new

Google internal databases such as Dremel or Spanner will

find their way out as open-source projects (like Apache

Drill or Cloudera Impala). DynamoDB surely initiated a

tectonic shift at the start of 2012. They call it the fastest

growing service ever launched at Amazon. It’s the ultimate

scaling machine. New features are coming slowly but the

focus on SSDs and latency is quite amazing.

Multi-model databases are also worth looking at. Orient-

DB, its famous representative, is not a newcomer but it is

improving quickly. Perhaps too quickly, because some cus-

tomers might now hope that since OrientDB has reached

Version 1.0, it will gain a lot more stability. Graph, Docu-

ment, Key-Value support combined with transactions and

SQL are reasons enough to give it second try. Its good SQL

support makes it interesting for analytic solutions such as

Penthao. Another newcomer in this space is ArangoDB. It

is moving fast and it doesn’t flinch from comparing itself in

benchmarks against the established players.

The native JSON and graph support saves a lot of effort if

new requirements have to be implemented and the new

data has a different model that must be persisted. By far

the biggest surprise this year was Datomic. Written by

some rock stars of the Clojure programming language in

an incredibly short time, it unveils a whole bunch of new

paradigms. It has made its way into the ThoughtWorks

radar with the recommendation to have a look at it.

And although it is “just” a layer on top of established data-

bases, it brings advantages such as:

• Transactions

• A time machine

• A fresh and powerful query approach

• A new schema approach

• Caching and scaling features

Currently, Datomic supports DynamoDB, Riak, Couch-

base, Infinispan and SQL as the underlying storage engine.

It even allows you to mix and query different databases

simultaneously. Many veterans have been surprised that

such a radical paradigm shift can be possible. Luckily, it is.

http://www.InfoQ.com

Page 7Contents

Summary
To conclude, let us address three points:

1. New articles by Eric Brewer on the CAP theorem

should have come several years earlier. In his article - CAP

Twelve Years Later: How the “Rules” Have Changed

he states that “2 of 3” is misleading, explaining the reasons,

why the world is more complicated than a simple CP/AP i.e.

ACID/BASE choice. Nevertheless, thousands of talks and ar-

ticles kept praising the CAP theorem without critical review

for years. Michael Stonebraker was the strongest censor of

the NoSQL movement (and the NoSQL space owes him a

lot), pointing to these issues some years ago. Unfortunately,

not many are listening. But now that Brewer has updated

his theorem, the time of simple CAP statements is definitely

over. Please be at the very front in pointing out the true and

diverse CAP implications.

2. As we all know, the weaknesses of the classical relational

databases have lead to the NoSQL field. But it was just a

matter of time before the empire would strike back. Under

the term “NewSQL” we can see a bunch of new engines

(such as database.com, VoltDB, GenieDB, etc. see Figure 2),

improving classic solutions, sharding and cloud solutions,

thanks to the NoSQL movement.

But as many databases try to implement every feature, clear

frontiers vanish. The decision for a database is getting more

complicated than ever. You have to know about 50 use cases

and 50 databases, and you should answer at least 50 ques-

tions. The latter have been gathered by the author over two

years of NoSQL consulting and can be found here: Select the

Right Database, Choosing between NoSQL and NewSQL.

3. It’s common wisdom that every technology shift – since

before client-server - is about ten times more costly

to switch to. For example, switching from Mainframe to

Client-Server, Client-Server to SOA, SOA to WEB, RDBMS

to Hybrid Persistence, etc. And as a consequence, many

companies hesitate and struggle in adding NoSQL to their

portfolio. But it is also known that the early adopters who

are trying to get the best of both worlds and thus in-

tegrate NoSQL quickly will be better positioned for the fu-

ture. In this regard, NoSQL solutions will be here to stay and

always a gainful area for evaluations.

About the Author
Prof. Dr. Stefan Edlich is a senior lecturer at Beuth HS of Technology Berlin (University of App. Sc.). He wrote

more than ten IT books for publishers such as Apress, OReilly, Spektrum/Elsevier and others. He runs the

NoSQL Archive, did NoSQL consulting, organizes NoSQL conferences, wrote the world’s first two NoSQL

books and is addicted to the Clojure programming language.

 2013
New York
Save $100 wheN You
regiSTer wiTh promo
Code: “NoSQL”

OVER 100 SPEAKERS | 6 CONCURRENT TRACKS
KEy TOpicS: JAvA, AgilE, clOud, MOBilE, NOSQl, Big dATA

http://www.InfoQ.com
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://qconnewyork.com/registration-intro.html

Page 8Contents

introduction to
mongodB for Java,
php and
python developers
By Rick Hightower

This article covers using MongoDB as a way to get started

with NoSQL. It presents an introduction to considering

NoSQL, why MongoDB is a good NoSQL implementation

to get started with, MongoDB shortcommings and trade-

offs, key MongoDB developer concepts, MongoDB archi-

tectural concepts (sharding, replica sets), using the console

to learn MongoDB, and getting started with MongoDB for

Python, Java and PHP developers. The article uses Mon-

goDB, but many concepts introduced are common in other

NoSQL solutions. The article should be useful for new de-

velopers, ops and DevOps who are new to NoSQL.

From no NoSQL to sure why not
The first time I heard of something that actually could be

classified as NoSQL was from Warner Onstine, who is cur-

rently working on some CouchDB articles for InfoQ. Warn-

er was going on and on about how great CouchDB was.

This was before the term NoSQL was coined. I was skepti-

cal, and had just been on a project that was converted from

an XML Document Database back to Oracle due to issues

with the XML Database implementation. I did the conver-

sion. I did not pick the XML Database solution, or decide

to convert it to Oracle. I was just the consultant guy on the

project (circa 2005) who did the work after the guy who

picked the XML Database moved on and the production is-

sues started to happen.

This was my first document database. This bred skepticism

and distrust of databases that were not established RD-

BMS (Oracle, MySQL, etc.). This incident did not create the

skepticism. Let me explain.

First, all of the Object-Oriented Database (OODB) folks for

years preached how it was going to be the next big thing. It

has not happened yet. I hear 2013 will be the year of the

OODB just like it was going to be in 1997. Then there were

the XML Database people preaching something very simi-

lar, which did not seem to happen either at least at the per-

vasive scale that NoSQL is happening. My take was, ignore

this document-oriented approach and NoSQL, and see if it

goes away. To be successful, it needs some community be-

hind it, some clear use-case wins, and some corporate mus-

cle/marketing, and I will wait until then. Sure the big guys

need something like Dynamo and BigTable, but it is a niche,

I assumed. Then there was BigTable, MapReduce, Google

App Engine, and Dynamo in the news with white papers.

Then Hadoop, Cassandra, MongoDB, Membase, HBase,

and the constant small but growing drum beat of change

and innovation. Even skeptics have limits.

Then in 2009, Eric Evans coined the term NoSQL to de-

scribe the growing list of open-source distributed databas-

es. Now there is this NoSQL movement, three years in and

counting. Like Ajax, giving something a name seems to in-

spire its growth, or perhaps we don’t name movements un-

til there is already a ground swell. Either way, having a name

like NoSQL with a common vision is important to changing

the world, and you can see the community, use-case wins,

and corporate marketing muscle behind NoSQL. It has gone

beyond the buzz stage. Also in 2009 was the first project

that I worked on that had mass scale-out requirements that

was using something that is classified as part of NoSQL.

In 2009, MongoDB was released from 10Gen and the

NoSQL movement was in full swing. Somehow MongoDB

managed to move to the front of the pack in terms of mind-

share followed closely by Cassandra and others (see Figure

1). MongoDB is listed as a top job trend on Indeed.com, in

“ mongodB is a
good first step for
developers dipping
their toe into
the NoSQL
solution space.”

http://www.InfoQ.com

Page 9Contents

second place to be exact (behind HTML 5 and before iOS),

which is fairly impressive given MongoDB was a relative

latecomer to the NoSQL party.

MongoDB is a distributed document-oriented, schema-less

storage solution similar to Couchbase and CouchDB. Mon-

goDB uses JSON-style documents to represent, query

and modify data. Internally, data is stored in BSON (binary

JSON). MongoDB’s closest cousins seem to be CouchDB/

Couchbase. MongoDB supports many clients/languages,

namely, Python, PHP, Java, Ruby, C++, etc. This article is go-

ing to introduce key MongoDB concepts and then show ba-

sic CRUD/Query examples in JavaScript (part of MongoDB

console application), Java, PHP and Python.

Disclaimer: I have no ties with the MongoDB community

and no vested interests in MongoDB’s success or failure. I

am not an advocate. I merely started to write about Mon-

goDB because it seems to be the most successful, seems to

have the most momentum for now, and in many ways typi-

fies the diverse NoSQL market. MongoDB success is largely

due to having easy-to-use, familiar tools. I’d love to write

about CouchDB, Cassandra, Couchbase, Redis, HBase or

any number of NoSQL solutions if there was just more hours

in the day or stronger coffee or if coffee somehow extended

how much time I had. Redis seems truly fascinating.

MongoDB seems to have the right mix of features and ease-

of-use, and has become a prototypical example of what a

NoSQL solution should look like. MongoDB can be used as

a base of knowledge to understand other solutions

(compare/contrast). This article is not an endorsement.

Other than this, if you want to get started with NoSQL,

MongoDB is a great choice.

MongoDB, a gateway drug to NoSQL
MongoDB’s combination of features, simplicity, commu-

nity, and documentation make it successful. The product

itself has high availability, journaling (which is not always

a given with NoSQL solutions), replication, auto-sharding,

map reduce, and an aggregation framework (so you don’t

have to use map-reduce directly for simple aggregations).

MongoDB can scale reads as well as writes.

NoSQL, in general, has been reported to be more agile than

full RDBMS/SQL due to problems with schema migration

of SQL-based systems. Having been on large RDBMS sys-

tems and witnessing the trouble and toil of doing SQL sche-

ma migrations, I can tell you that this is a real pain to deal

with. RDBMS/SQL often require a lot of upfront design or

a lot schema migration later. NoSQL is viewed to be more

agile in that it allows the applications to worry about dif-

ferences in versioning instead of forcing schema migration

and larger upfront designs. To the MongoDB crowd, it

is said that MongoDB has dynamic schema not no schema

(sort of like the dynamic language versus untyped language

argument from Ruby, Python, etc. developers).

MongoDB does not seem to require a lot of ramp-up time.

Its early success may be attributed to the quality and

ease-of-use of its client drivers, which was more of an

afterthought for other NoSQL solutions (“Hey here is our

REST or XYZ wire protocol, deal with it yourself”). Com-

pared to other NoSQL solutions, it has been said that Mon-

goDB is easier to get started. Also, with MongoDB many

DevOps things come cheaply or free. This is not that there

are never any problems or one should not do capacity plan-

ning. MongoDB has become for many an easy onramp for

NoSQL, a gateway drug if you will.

MongoDB was built to be fast. Speed is a good reason to

pick MongoDB. Raw speed shaped architecture of Mon-

goDB. Data is stored in memory-using memory-mapped

files. This means that the virtual memory manager, a

Keep your NoSQL
Skills razor Sharp!
view all NoSQL Content on infoQ.com

Figure 1: MongodB leads the NoSQl pack

http://www.InfoQ.com
http://www.infoq.com/nosql

Page 10Contents

highly optimized system function of modern operating sys-

tems, does the paging/caching. MongoDB also pads areas

around documents so that they can be modified in place,

making updates less expensive. MongoDB uses a binary

protocol instead of REST like some other implementations.

Also, data is stored in a binary format instead of text (JSON,

XML), which could speed writes and reads. Another rea-

son MongoDB may do well is because it is easy to scale

out reads and writes with replica sets and autosharding.

You might expect if MongoDB is so great that there would

be a lot of big names using them, and there are: Craigslist,

Disney, The New York Times and many more use it.

Caveats
MongoDB indexes may not be as flexible as Oracle/MySQL/

Postgres or other even other NoSQL solutions.

The order of index matters as it uses B-Trees. Realtime que-

ries might not be as fast as Oracle/MySQL and other NoSQL

solutions especially when dealing with array fields, and the

query-plan optimization work is not as far as long as more ma-

ture solutions. You can make sure MongoDB is using the in-

dexes you set up quite easily with an explain function. Don’t let

this scare you. MongoDB is good enough if queries are simple

and you do a little homework, and it is always improving.

MongoDB does not have or integrate a full-text search en-

gine like many other NoSQL solutions do (many use Lucene

under the covers for indexing), although it seems to support

basic text search better than most traditional databases.

Every version of MongoDB seems to add more features

and addresses shortcomings of the previous releases. Mon-

goDB added journaling a while back so they can have single

server durability; prior to this you really needed a replica

or two to ensure some level of data safety.

10gen improved Mongo’s replication and high availability with

Replica Sets. Another issue with current versions of Mon-

goDB (2.0.5) is lack of concurrency due to MongoDB having a

global read/write lock, which allows reads to happen concur-

rently while write operations happen one at a time.

There are workarounds for this involving shards, and/or

replica sets, but these are not always ideal, and do not fit

the “it should just work mantra” of MongoDB. Recently at

the MongoSF conference, Dwight Merriman, co-founder

and CEO of 10gen, discussed the concurrency internals of

MongoDB v2.2 (future release). Dwight noted that Mon-

goDB 2.2 did a major refactor to add database level concur-

rency, and will soon have collection-level concurrency now

that the hard part of the concurrency refactoring is done.

Also keep in mind, writes are in RAM and eventually get

synced to disk since MongoDB uses memory-mapped files.

Writes are not as expensive as if you were always waiting to

sync to disk. Speed can mitigate concurrency issues.

This is not to say that MongoDB will never have some

shortcomings and engineering tradeoffs. Also, you can, will

and sometimes should combine MongoDB with a relational

database or a full text search like Solr/Lucene for some ap-

plications. For example, if you run into issue with effectively

building indexes to speed some queries you might need to

combine MongoDB with Memcached. None of this is com-

pletely foreign though, as it is not uncommon to pair RD-

BMS with Memcached or Lucene/Solr. When to use Mon-

goDB and when to develop a hybrid solution is beyond the

scope of this article. In fact, when to use a SQL/RDBMS or

another NoSQL solution is beyond the scope of this article,

but it would be nice to hear more discussion on this topic.

The price you pay for MongoDB, one of the youngest but

perhaps best-managed NoSQL solutions, is lack of matu-

rity. It does not have a code base going back three decades

like RDBMS systems. It does not have tons and tons of third

party management and development tools. There have

been issues, there are issues and there will be issues, but

MongoDB seems to work well for a broad class of applica-

tions, and is rapidly addressing many issues.

Also finding skilled developers and ops (admins, devops,

etc.) who are familiar with MongoDB or other NoSQL solu-

tions might be tough. Somehow MongoDB seems to be the

most approachable or perhaps just best marketed. Having

worked on projects that used large NoSQL deployments,

few people on the team really understand the product (lim-

itations, etc.), which leads to trouble.

In short if you are kicking the tires of NoSQL, starting with

MongoDB makes a lot of sense.

MongoDB concepts
MongoDB is document oriented but has many comparable

concepts to traditional SQL/RDBMS solutions.

1. oracle: Schema, Tables, Rows, Columns

2. mySQL: Database, Tables, Rows, Columns

3. mongodB: Database, Collections, Document, Fields

4. mySQL/oracle: Indexes

5. mongodB: Indexes

6. mySQL/oracle: Stored Procedures

7. mongodB: Stored JavaScript

http://www.InfoQ.com

Page 11Contents

8. oracle/mySQL: Database Schema

9. mongodB: Schema free!

10. oracle/mySQL: Foreign keys, and joins

11. mongodB: DBRefs, but mostly handled by client code

12. oracle/mySQL: Primary key

13. mongodB: ObjectID

If you have used MySQL or Oracle here is a good guide to

similar processes in MongoDB:

Database Process Type Oracle MySQL MongoDB

Daemon/Server Oracle mysqld mongod

Console Client sqlplus mysql mongo

Backup utility sqlplus mysqldump mongodump

Import utility sqlplus mysqlimport mongoimport

You can see a trend here. Where possible, Mongo tries to

follow the terminology of MySQL. They do this with console

commands as well. If you are used to MySQL, MongoDB tries

to make the transition a bit less painful.

SQL operations VS MongoDB operations
MongoDB queries are similar in concept to SQL queries and

use a lot of the same terminology. There is no special language

or syntax to execute MongoDB queries; you simply assemble

a JSON object. The MongoDB site has a complete set of ex-

ample queries done in both SQL and MongoDB JSON docs to

highlight the conceptual similarities. What follows is several

small listings to compare MongoDB operations to SQL.

Insert
SQL

INSERT INTO CONTACTS (NAME, PHONE_NUMBER)
VALUES(‘RICK HIGHTOWER’,’520-555-1212’)

mongodB

db.contacts.insert({name:’RICK HIGHTOWER’,phoneNu
mber:’520-555-1212’})

Selects
SQL

SELECT name, phone_number FROM contacts WHERE
age=30 ORDER BY name DESC

mongodB

db.contacts.find({age:30},
{name:1,phoneNumber:1}).sort({name:-1})

SQL

SELECT name, phone_number FROM contacts WHERE
age>30 ORDER BY name DESC

mongodB

db.contacts.find({age:{$gt:33}},

 THE ANNUAL
INTERNATIONAL
 SOFTWARE
DEVELOPMENT
CONFERENCE
SOFTWARE IS CHANGING THE WORLD

AND HERE ARE THE DATES:

QCon Chengdu
April 11 - 12, 2013

QCon Tokyo
Apr 23, 2013

QCon Beijing
April 25 - 27, 2013

QCon New York
June 12 - 14, 2013

QCon São Paulo
Aug 29 - 30, 2013

QCon Shanghai
Oct 23 - 25, 2013

QCon San Francisco
Nov 11 - 13, 2013

QCon London
5 - 7 March, 2014

qconferences.com
for more info go to

http://www.InfoQ.com
http://www.qconferences.com/

Page 12Contents

{name:1,phoneNumber:1}).sort({name:-1})

Creating indexes
SQL

CREATE INDEX contact_name_idx ON contact(name
DESC)

mongodB

db.contacts.ensureIndex({name:-1})

Updates
SQL

UPDATE contacts SET phoneNumber=’415-555-1212’
WHERE name=’Rick Hightower’

mongodB

db.contacts.update({name:’Rick Hightower’},
{$set:{phoneNumber:1}}, false, true)

Additional features of note
MongoDB has many useful features like Geo Indexing (How

close am I to X?), distributed file storage, capped collec-

tion (older documents auto-deleted), aggregation frame-

work (like SQL projections for distributed nodes without

the complexities of MapReduce for basic operations on

distributed nodes), load sharing for reads via replication,

autosharding for scaling writes, high availability, and your

choice of durability (journaling) and/or data safety (make

sure a copy exists on other servers).

Architecture replica sets,
autosharding
The model of MongoDB is such that you can start basic

and use features as your growth/needs change without too

much trouble or change in design. MongoDB uses replica

sets to provide read scalability, and high availability. Au-

tosharding is used to scale writes (and reads). Replica sets

and autosharding go hand in hand if you need mass scale

out. With MongoDB scaling out seems easier than tradi-

tional approaches as many things seem to come built-in and

happen automatically. Less operation/administration and

a lower TCO than other solutions seems likely. However

you still need capacity planning (good guess), monitoring

(test your guess), and the ability to determine your current

needs (adjust your guess).

Replica sets
The major advantages of replica sets are business continu-

ity through high availability, data safety through data re-

dundancy, and read scalability through load sharing (reads).

Replica sets use a share-nothing architecture. A fair bit of

the brains of replica sets is in the client libraries. The client

libraries are replica-set aware. With replica sets, MongoDB

language drivers know the current primary. Language driv-

er is a library for a particular programming language, think

JDBC driver or ODBC driver, but for MongoDB. All write

operations go to the primary. If the primary is down, the

drivers know how to get to the new primary (an elected

new primary); this is auto failover for high availability. The

data is replicated after writing. Drivers always write to the

replica set’s primary (called the master), the master then

replicates to slaves. The primary is not fixed. The master/

primary is nominated.

Typically you have at least three MongoDB instances in a

replica set on different server machines (see figure 2).

You can add more replicas of the primary if you like for

read scalability, but you only need three for high avail-

ability failover. There is a way to sort of get down to two,

but let’s leave that out for this article. Except for this small

tidbit, there are advantages of having three versus two in

general. If you have two instances and one goes down, the

remaining instance has 200% more load than before. If you

have three instances and one goes down, the load for the

remaining instances only go up by 50%. If you run your box-

es at 50% capacity typically and you have an outage that

means your boxes will run at 75% capacity until you get the

remaining box repaired or replaced. If business continuity

is your thing or important for your application, then having

at least three instances in a replica set sounds like a good

plan anyway (not all applications need it).

Figure 2: Replica sets

http://www.InfoQ.com

Page 13Contents

In general, once replication is set up it just works. However,

in your monitoring, which is easy to do in MongoDB, you

want to see how quickly data is replicated from the prima-

ry (master) to replicas (slaves). The slower the replication

is, the dirtier your reads are. The replication is by default

async (non-blocking). Slave data and primary data can be

out of sync for however long it takes to do the replication.

There are already whole books written just on making

Mongo scalable, if you work at a Foursquare-like company

or a company where high availability is very important and

use Mongo, I suggest reading such a book.

By default, replication is non-blocking/async. This might be

acceptable for some data (category descriptions in an on-

line store), but not other data (a shopping cart’s credit-card

transaction data). For important data, the client can block

until data is replicated on all servers or written to the jour-

nal (journaling is optional). The client can force the master

to sync to slaves before continuing. This sync blocking is

slower. Async/non-blocking is faster and is often described

as eventual consistency. Waiting for a master to sync is a

form of data safety.

There are several forms of data safety and options avail-

able to MongoDB from syncing to at least one other server

to waiting for the data to be written to a journal (durability).

Here is a list of some data safety options for MongoDB:

1. Wait until write has happened on all replicas

2. Wait until write is on two servers (primary and one other)

3. Wait until write has occurred on majority of replicas

4. Wait until write operation has been written to journal

(The above is not an exhaustive list of options.) The key word

of each option above is wait. The more syncing and durability,

the more waiting, and the harder it is to scale cost effectively.

Journaling: Is durability
overvalued if RAM is the new disk?
Data safety versus durability
It may seem strange to some that journaling was added as

late as version 1.8 to MongoDB. Journaling is only now the

default for 64-bit OS for MongoDB 2.0. Prior to that, you

typically used replication to make sure write operations

were copied to a replica before proceeding if the data was

very important. The thought being that one server might

go down, but two servers are very unlikely to go down at

the same time. Unless somebody backs a truck over a

highvoltage utility pole causing all of your air-conditioning

equipment to stop working long enough for all of your

servers to overheat at once, but that never happens (it

happened to Rackspace and Amazon). And if you were

worried about

this, you would have replication across availability zones,

but I digress.

At one point MongoDB did not have single-server durabil-

ity, now it does with addition of journaling. But this is far

from a moot point. The general thought from the Mon-

goDB community was and maybe still is that to achieve

Web Scale, durability was thing of the past. After all, mem-

ory is the new disk. If you could get the data on a second

server or two, your risk is reduced because the chances of

them all going down at once is very, very low.

How often do servers go down these days? What are the

chances of two servers going down at once? The general

thought from MongoDB community was (is?) durability is

overvalued and was just not Web Scale. Whether this is a

valid point or not, there was much fun made about this at

MongoDB’s expense.

As you recall, MongoDB uses memory-mapped files for its

storage engine so it could be a while for the operating sys-

tem to sync the data in memory to the disk. If you did have

several machines go down at once (which should be very

rare), complete recoverability would be impossible. There

were workaround with tradeoffs; for example to get around

or minimize this now non-issue, you could force MongoDB

to do an fsync of the data in memory to the file system, but

as you guessed even with a RAID level four and a really awe-

some server that can get slow quick.

The moral of the story is MongoDB has journaling as well

as many other options so you can decide what the best en-

gineering tradeoff in data safety, raw speed and scalability.

You get to pick. Choose wisely.

The reality is that no solution offers complete reliability, and

if you are willing to allow for some loss (which you can with

some data), you can get enormous improvements in speed

and scale. Let’s face it, your virtual-farm-game data is just

not as important as Wells Fargo’s bank transactions.

I know your mom will get upset when she loses the virtual

tractor she bought for her virtual farm with her virtual mon-

ey, but unless she pays real money she will likely get over it.

I’ve lost a few posts on Twitter over the years, and I have not

sued once. If your servers have an uptime of 99 percent and

you block/replicate to three servers then the probability of

them all going down at once is 1 in 1,000,000. Of course,

http://www.InfoQ.com

Page 14Contents

problems you could replicate to another availability zone or

geographic area connected with a high-speed WAN. How

much speed and reliability do you need? How much money

do you have?

An article on when to use MongoDB journaling versus

older recommendations will be a welcome addition. Gen-

erally, it seems journaling is mostly a requirement for very

sensitive financial data and single-server solutions. Your

results may vary, and don’t trust my math, it has been a

few years since I got a B+ in statistics, and I am no expert

on SLA of modern commodity servers (the above was just

spitballing). If you have ever used a single non-clustered

RDBMS system for a production system that relied on

frequent backups and a transaction log (journaling) for

data safety, raise your hand. Okay, if you raised your hand,

then you just may not need autosharding or replica sets.

To start with MongoDB, just use a single server with

journaling turned on.

If you require speed, you can configure MongoDB journ-

aling to batch writes to the journal (which is the default).

This is a good model to start out with and probably very

much like quite a few applications you’ve already worked

on (assuming that most application don’t need high avail-

ability). The difference is, of course, if later your applica-

tion needs high availability, read scalability, or write scal-

ability, MongoDB has you covered. Also setting up high

availability seems easier on MongoDB than other more

established solutions.

If you can afford two other servers and your app reads

more than it writes, you can get improved high availability

and increased read scalability with replica sets. If your ap-

plication is write-intensive then you might need autoshard-

ing. The point is you don’t have to be Facebook or Twitter to

use MongoDB. You can even be working on a one-off dinky

application. MongoDB scales down as well as up.

Autosharding
Replica sets are good for failover and speeding up reads, but

to speed up writes, you need autosharding. According to a

talk by Roger Bodamer on Scaling with MongoDB, 90% of

projects do not need autosharding. Conversely, almost all pro-

jects will benefit from replication and high availability provid-

ed by replica sets. Also once MongoDB improves its concur-

rency in version 2.2 and beyond, it may be the case that 97%

of projects don’t need autosharding.

Sharding allows MongoDB to scale horizontally. Sharding is

also called partitioning. You partition to each of your serv-

ers

a portion of the data to hold or the system does this for you.

MongoDB can automatically change partitions for optimal

data distribution and load balancing, and it allows you to

elastically add new nodes (MongoDB instances). How to

setup autosharding is beyond the scope of this introduc-

tory article. Autosharding can support automatic failover

(along with replica sets). There is no single point of failure.

Remember 90% of deployments don’t need sharding, but if

you do need scalable writes (apps like Foursquare, Twitter,

etc.), autosharding will work with minimal impact on your

client code.

There are three main process actors for autosharding:

mongod (database daemon), mongos, and the client-driver

library. Each mongod instance gets a shard. Mongod is the

process that manages databases, and collections. Mongos

is a router, it routes writes to the correct mongod instance

for autosharding. Mongos also handles looking for which

shards will have data for a query. To the client driver, mon-

gos looks like a mongod process more or less (autosharding

is transparent to the client drivers). Autosharding increases

Figure 3: Simple setup with journaling and single server;
okay for a lot of applications

Figure 4: MongodB Autosharding

http://www.InfoQ.com

Page 15Contents

write and read throughput, and helps with scale out. Rep-

lica sets are for high availability and read throughput. You can

combine them as shown in figure 5.

You shard on an indexed field in a document. Mongos col-

laborates with config servers (mongod instances acting as

config servers), which have the shard topology (where do

the key ranges live?). Shards are just normal mongod in-

stances. Config servers hold meta-data about the cluster

and are also mongodb instances.

Shards are further broken down into 64-MB chunks called

chunks. A chunk is 64-MB worth of documents for a col-

lection. Config servers hold which shard the chunks live in.

The autosharding happens by moving these chunks around

and distributing them into individual shards. The mongos

processes have a balancer routine that wakes up so often,

it checks to see how many chunks a particular shard has. If

a particular shard has too many chunks (nine more chunks

than another shard), then mongos starts to move data from

one shard to another to balance the data capacity amongst

the shards. Once the data is moved then the config servers

are updated in a two-phase commit.

The config servers contain a versioned shard topology and

are the gatekeeper for autosharding balancing. This topol-

ogy maps which shard has which keys. The config servers

are like a DNS server for shards. The mongos process uses

config servers to find where shard keys live. Mongod in-

stances are shards that can be replicated using replica sets

for high availability. Mongos and config server processes

do not need to be on their own server and can live on a

primary box of a replica set for example. For sharding you

need at least three config servers, and shard topologies

cannot change unless all three are up at the same time.

This ensures consistency of the shard topology. The full au-

tosharding topology is show in figure 6.

Kristina Chodorow, author of “Scaling MongoDB”, gave an

excellent talk on the internals of MongoDB sharding at OS-

CON 2011 if you would like to know more.

-

MapReduce
MongoDB has MapReduce capabilities for batch process-

ing similar to Hadoop. Massive aggregation is possible

through the divide-and-conquer nature of MapReduce.

Before the aggregation framework, MongoDB’s MapRe-

duce could be used instead to implement what you might

do with SQL projections (Group/By SQL). MongoDB also

added the aggregation framework, which negates the need

for MapReduce for common aggregation cases. In Mon-

goDB, Map and Reduce functions are written in JavaScript.

These functions are executed on servers (mongod), which

allows the code to be next to data that it is operating on

(think stored procedures, but meant to execute on distrib-

uted nodes and then collected and filtered). The results can

be copied to a results collection.

MongoDB also provides incremental MapReduce. This al-

lows you to run MapReduce jobs over collections, and then

later run a second job but only over new documents in the

collection. You can use this to reduce work required by

merging new data into existing results collection.

Figure 5: MongodB Autosharding plus Replica Sets
for scalable reads, scalable writes, and high availability

Figure 6: MongodB Autosharding full topology for large deployment including
Replica Sets, Mongos routers, Mongod Instance, and Config Servers

http://www.InfoQ.com

Page 16Contents

aggregation framework
The aggregation framework was added in MongoDB 2.1.

It is similar to SQL group by. Before the aggregation frame-

work, you had to use MapReduce for things like SQL’s group

by. Using the aggregation framework capabilities is easier

than MapReduce. Let’s cover a small set of aggregation

functions and their SQL equivalents inspired by the Mongo

docs as follows:

Count
SQL

SELECT COUNT(*) FROM employees

mongodB

db.users.employees([
{ $group: {_id:null, count:{$sum:1}} }
])

Sum salary where of each employee who are not retired by

department

SQL

SELECT dept_name SUM(salary) FROM employees
WHERE retired=false GROUP BY dept_name

mongodB

db.orders.aggregate([
 { $match:{retired:false} },
 { $group:{_id:”$dept_name”,
total:{$sum:”$salary”}} }
])

Installing MongoDB
Let’s mix in some code samples to try out along with the

concepts.

To install MongoDB go to the download page, download

and unrar/unzip the download to ~/mongodb-platform-ver-

sion/. Next you want to create the directory that will hold the

data and create a mongodb.config file (/etc/mongodb/mon-

godb.config) that points to said directory as follows:

Listing: installing mongodB

$ sudo mkdir /etc/mongodb/data

$ cat /etc/mongodb/mongodb.config
dbpath=/etc/mongodb/data

The /etc/mongodb/mongodb.config has one line dbpath=/

etc/mongodb/data that tells mongo where to put the data.

Next, you need to link mongodb to /usr/local/mongodb and

then add it to the path environment variable as follows:

Listing: Setting up mongodB on your path

$ sudo ln -s ~/mongodb-platform-version/ /usr/
local/mongodb
$ export PATH=$PATH:/usr/local/mongodb/bin

Run the server passing the configuration file that we cre-

ated earlier.

Listing: running the mongodB server

$ mongod --config /etc/mongodb/mongodb.config

Mongo comes with a nice console application called mongo

that lets you execute commands and JavaScript. JavaScript

to Mongo is what PL/SQL is to Oracle’s database. Let’s fire

up the console app, and poke around.

Firing up the mongos console application

$ mongo
MongoDB shell version: 2.0.4
connecting to: test
…
> db.version()
2.0.4
>

One of the nice things about MongoDB is the self-describing

console. It is easy to see what commands a MongoDB database

supports with the db.help() as follows:

Client: mongo db.help()

> db.help()
DB methods:
db.addUser(username, password[, readOnly=false])
db.auth(username, password)
db.cloneDatabase(fromhost)
db.commandHelp(name) returns the help for the
command
db.copyDatabase(fromdb, todb, fromhost)
db.createCollection(name, { size : ..., capped :
..., max : ... })
db.currentOp() displays the current operation in
the db

http://www.InfoQ.com

Page 17Contents

db.dropDatabase()
db.eval(func, args) run code server-side
db.getCollection(cname) same as db[‘cname’] or
db.cname
db.getCollectionNames()
db.getLastError() - just returns the err msg
string
db.getLastErrorObj() - return full status object
db.getMongo() get the server connection object
db.getMongo().setSlaveOk() allow this connection
to read from the nonmaster member of a replica
pair
db.getName()
db.getPrevError()
db.getProfilingStatus() - returns if profiling is
on and slow threshold
db.getReplicationInfo()
db.getSiblingDB(name) get the db at the same
server as this one
db.isMaster() check replica primary status
db.killOp(opid) kills the current operation in
the db
db.listCommands() lists all the db commands
db.logout()
db.printCollectionStats()
db.printReplicationInfo()
db.printSlaveReplicationInfo()
db.printShardingStatus()
db.removeUser(username)
db.repairDatabase()
db.resetError()
db.runCommand(cmdObj) run a database command. if
cmdObj is a string, turns it into { cmdObj : 1 }
db.serverStatus()
db.setProfilingLevel(level,{slowms}) 0=off 1=slow
2=all
db.shutdownServer()
db.stats()
db.version() current version of the server
db.getMongo().setSlaveOk() allow queries on a
replication slave server
db.fsyncLock() flush data to disk and lock server
for backups
db.fsyncUnock() unlocks server following a
db.fsyncLock()

You can see some of the commands refer to concepts we

discussed earlier. Now let’s create a employee collection,

and do some CRUD operations on it.

Create employee Collection

> use tutorial;
switched to db tutorial
> db.getCollectionNames(); []
 > db.employees.insert({name:’Rick Hightow-
er’, gender:’m’, gender:’m’, phone:’520-555-1212’,
age:42});
Mon Apr 23 23:50:24 [FileAllocator] allocating
new datafile /etc/mongodb/data/tutorial.ns, ...

The use command uses a database. If that database does

not exist, it will be lazily created the first time we access it

(write to it). The db object refers to the current database.

The current database does not have any document collec-

tions to start with (this is why db.getCollections() returns

an empty list). To create a document collection, just insert

a new document. Collections like databases are lazily cre-

ated when they are actually used. You can see that two col-

lections are created when we inserted our first document

into the employees collection as follows:

> db.getCollectionNames();
[“employees”, “system.indexes”]

The first collection is our employees collection and the second

collection is used to hold onto indexes we create.

To list all employees you just call the find method on the

employees collection.

> db.employees.find()
{ “_id” : ObjectId(“4f964d3000b5874e7a163895”),
“name” : “Rick Hightower”,
 “gender” : “m”, “phone” : “520-555-1212”,
“age” : 42 }

The above is the query syntax for MongoDB. There is not

a separate SQL like language. You just execute JavaScript

code, passing documents, which are just JavaScript asso-

ciative arrays, err, I mean JavaScript objects. To find a par-

ticular employee, you do this:

> db.employees.find({name:”Bob”})

Bob quit so to find another employee, you would do this:

> db.employees.find({name:”Rick Hightower”})
{ “_id” : ObjectId(“4f964d3000b5874e7a163895”),

http://www.InfoQ.com

Page 18Contents

“name” : “Rick Hightower”, “gender” : “m”,
“phone” : “520-555-1212”, “age” : 42 }

The console application just prints out the document right to

the screen. I don’t feel 42. At least I am not 100 as shown by

this query:

> db.employees.find({age:{$lt:100}})
{ “_id” : ObjectId(“4f964d3000b5874e7a163895”),
“name” : “Rick Hightower”, “gender” : “m”, “phone”
: “520-555-1212”, “age” : 42 }

Notice to get employees less than a 100, you pass a docu-

ment with a subdocument, the key is the operator ($lt), and

the value is the value (100). Mongo supports all of the oper-

ators you would expect like $lt for less than, $gt for greater

than, etc. If you know JavaScript, it is easy to inspect fields

of a document, as follows:

> db.employees.find({age:{$lt:100}})[0].name
Rick Hightower

If we were going to query, sort or shard on employee

names, then we would need to create an index as follows:

db.employees.ensureIndex({name:1}); //ascending
index, descending would be -1

Indexing by default is a blocking operation, so if you are in-

dexing a large collection, it could take several minutes and

perhaps much longer. This is not something you want to do

casually on a production system. There are options to build

indexes as a background task, to setup a unique index, and

complications around indexing on replica sets, and much

more. If you are running queries that rely on certain index-

es to be performant, you can check to see if an index exists

with db.employees.getIndexes(). You can also see a list of

indexes as follows:

> db.system.indexes.find()
{ “v” : 1, “key” : { “_id” : 1 }, “ns” : “tuto-
rial.employees”, “name” : “_id_” }

By default all documents get an object id. If you don’t

give an object an _id, it will be assigned one by the system

(like a criminal suspect gets a lawyer). You can use that _id

to look up an object as follows with findOne:

> db.employees.findOne({_id : ObjectId(“4f964d3000
b5874e7a163895”)})
{ “_id” : ObjectId(“4f964d3000b5874e7a163895”),
“name” : “Rick Hightower”,
 “gender” : “m”, “phone” : “520-555-1212”, “age”
: 42 }

Java and MongoDB
Pssst! Here is a dirty little secret. Don’t tell your Node.js

friends or Ruby friends this. More Java developers use

MongoDB than Ruby and Node.js. They just are not as loud

about it. Using MongoDB with Java is very easy.

The language driver for Java seems to be a straight port of

something written with JavaScript in mind, and the usu-

ability suffers a bit because Java does not have literals for

maps/objects like JavaScript does. Thus an API written for a

dynamic language does not quite fit Java. There can be a lot

of usability improvement in the MongoDB Java language

driver (hint, hint). There are alternatives to using just the

straight MongoDB language driver, but I have not picked a

clear winner (mjorm, morphia, and Spring data MongoDB

support). I’d love just some usability improvements in the

core driver without the typical Java annotation fetish, per-

haps a nice Java DAO DSL (see section on criteria DSL if

you follow the link).

Setting up Java and MongoDB
Let’s go ahead and get started then with Java and MongoDB.

Download latest mongo driver from github (https://github.

com/mongodb/mongo-java-driver/downloads), then put it

somewhere, and then add it to your classpath as follows:

$ mkdir tools/mongodb/lib
$ cp mongo-2.7.3.jar tools/mongodb/lib

This assumes you are using Eclipse, but if not by now you know

how to translate these instructions to your IDE anyway. The

short story is put the mongo jar file on your classpath. You can

put the jar file anywhere, but I like to keep mine in ~/tools/.

If you are using Eclipse it is best to create a classpath vari-

able so other projects can use the same variable and not go

through the trouble. Create a new Eclipse Java project in a

new Workspace. Now right-click your new project, open

the project properties, go to the Java Build Path->Libraries-

>Add Variable->Configure Variable shown in Figure 7.

http://www.InfoQ.com

Page 19Contents

Figure 7: Adding Mongo jar file as a classpath variable in Eclipse

For Eclipse from the “Project Properties->Java Build Path-

>Libraries”, click “Add Variable”, select “MONGO”, click

“Extend…”, select the jar file you just downloaded.

Figure 8: Adding Mongo jar file to your project

Once you have it all setup, working with Java and Mon-

goDB is quite easy as shown in figure 9.

Figure 9: using MongodB from Eclipse

The above is roughly equivalent to the console/JavaScript

code that we were doing earlier. The BasicDBObject is a

type of Map with some convenience methods added. The

DBCursor is like a JDBC ResultSet. You execute queries with

DBColleciton. There is no query syntax, just finder methods

on the collection object. The output from the above is:

http://www.InfoQ.com

Page 20Contents

Out:
{ “_id” : { “$oid” : “4f964d3000b5874e7a163895”}
, “name” : “Rick
Hightower” , “gender” : “m” , “phone” : “520-
555-1212” ,
“age” : 42.0}
{ “_id” : { “$oid” : “4f984cce72320612f8f432bb”}
, “name” : “Diana
Hightower” , “gender” : “f” , “phone” : “520-
555-1212” ,
“age” : 30}

Once you create some documents, querying for them is

quite simple as show in figure 10.

Figure 10: using Java to query MongodB

The output from figure 10 is as follows:

Rick?
{ “_id” : { “$oid” : “4f964d3000b5874e7a163895”}
, “name” : “Rick
Hightower” , “gender” : “m” , “phone” : “520-
555-1212” , “age” : 42.0}
Diana?
{ “_id” : { “$oid” : “4f984cae72329d0ecd8716c8”}
, “name” : “Diana
Hightower” , “gender” : “f” , “phone” : “520-
555-1212” , “age” : 30}

Diana by object id?
{ “_id” : { “$oid” : “4f984cce72320612f8f432bb”}
, “name” : “Diana
Hightower” , “gender” : “f” , “phone” : “520-
555-1212” , “age” : 30}

Just in case anybody wants to cut and paste any of the

above, here it is again all in one go in the following listing.

Listing: Complete Java Listing

package com.mammatustech.mongo.tutorial;
import org.bson.types.ObjectId;

import com.mongodb.BasicDBObject;
import com.mongodb.DBCollection;
import com.mongodb.DBCursor;
import com.mongodb.DBObject;
import com.mongodb.Mongo;
import com.mongodb.DB;
public class Mongo1Main {
 public static void main (String [] args)
throws Exception {
Mongo mongo = new Mongo();
DB db = mongo.getDB(“tutorial”);
DBCollection employees =
db.getCollection(“employees”);
employees.insert(new BasicDBObject().
append(“name”, “Diana Hightower”)
 .append(“gender”, “f”).append(“phone”, “520-
555-1212”).append(“age”, 30));
DBCursor cursor = employees.find();
while (cursor.hasNext()) {
 DBObject object = cursor.next();
 System.out.println(object);
}

//> db.employees.find({name:”Rick Hightower”})
cursor=employees.find(new BasicDBObject().
append(“name”, “Rick Hightower”));
System.out.printf(“Rick?\n%s\n”, cursor.next());

//> db.employees.find({age:{$lt:35}})
BasicDBObject query = new BasicDBObject();
 query.put(“age”, new BasicDBObject(“$lt”,
35));
cursor=employees.find(query);
System.out.printf(“Diana?\n%s\n”, cursor.
next());

//> db.employees.findOne({_id : ObjectId(“4f984c
ce72320612f8f432bb”)})
DBObject dbObject = employees.findOne(new Ba-
sicDBObject().append(“_id”,
new ObjectId(“4f984cce72320612f8f432bb”)));
System.out.printf(“Diana by object id?\n%s\n”,
dbObject);

 }
}

Please note that the above is completely missing any error

checking, or resource cleanup. You will need to do some of

course (try/catch/finally, close connection, you know that

http://www.InfoQ.com

Page 21Contents

sort of thing).

python mongodB Setup

Setting up Python and MongoDB are quite easy since Python has its own package manager.

To install mongodb lib for Python MAC OSX, you would do the following:

$ sudo env ARCHFLAGS=’-arch i386 -arch x86_64’
$ python -m easy_install pymongo

To install Python MongoDB on Linux or Windows do the following:

$ easy_install pymongo
or

$ pip install pymongo

If you don’t have easy_install on your Linux box you may have to do some sudo apt-get install python-setuptools or sudo

yum install python-setuptools iterations, although it seems to be usually installed with most Linux distributions these days. If

easy_install or pip is not installed on Windows, try reformatting your hard disk and installing a real OS, or if that is too incon-

vient go here.

Once you have it all setup, you will can create some code that is equivalent to the first console examples as shown in Figure 11.

Figure 11: python code listing part 1

Python does have literals for maps so working with Python is much closer to the JavaScript/Console from earlier than Java

is. Like Java there are libraries for Python that work with MongoDB (MongoEngine, MongoKit, and more). Even executing

queries is very close to the JavaScript experience as shown in figure 12.

Figure 12: python code listing part 2

http://www.InfoQ.com
https://pypi.python.org/pypi/setuptools%23windows

Page 22Contents

Here is the complete listing to make the cut-and-paste crowd (like me), happy.

Listing: Complete python listing

import pymongo
from bson.objectid import ObjectId
connection = pymongo.Connection()
db = connection[“tutorial”]
employees = db[“employees”]
employees.insert({“name”: “Lucas Hightower”, ‘gender’:’m’, ‘phone’:’520-555-1212’, ‘age’:8})
cursor = db.employees.find()
for employee in db.employees.find():
 print employee
print employees.find({“name”:”Rick Hightower”})[0]
cursor = employees.find({“age”: {“$lt”: 35}})
for employee in cursor:
 print “under 35: %s” % employee
diana = employees.find_one({“_id”:ObjectId(“4f984cce72320612f8f432bb”)})
print “Diana %s” % diana

The output for the python example is as follows:

{u’gender’: u’m’, u’age’: 42.0, u’_id’: ObjectId(‘4f964d3000b5874e7a163895’), u’name’: u’Rick Hightower’,
u’phone’:
u’520-555-1212’}
{u’gender’: u’f’, u’age’: 30, u’_id’: ObjectId(‘4f984cae72329d0ecd8716c8’), u’name’: u’Diana Hightower’,
u’phone’:
u’520-555-1212’}
{u’gender’: u’m’, u’age’: 8, u’_id’: ObjectId(‘4f9e111980cbd54eea000000’), u’name’: u’Lucas Hightower’,
u’phone’:
u’520-555-1212’}

All of the above but in PHP
Node.js , Ruby, and Python in that order are the trend settting crowd in our industry circa 2012. Java is the corporate

crowd, and PHP is the workhorse of the Internet, the “get it done” crowd. You can’t have a decent NoSQL solution without

having good PHP support.

To install MongoDB support with PHP use pecl as follows:

$ sudo pecl install mongo

Add the mongo.so module to php.ini.

http://www.InfoQ.com

Page 23Contents

extension=mongo.so

Then assuming you are running it on Apache, restart as fol-

lows:

$ apachectl stop
$ apachectl start

Figure 13 shows our roughly equivalent code listing in PHP.

The output for figure 13 is as follows:

Output:
array (‘_id’ => MongoId::__set_state(array(
‘$id’ => ‘4f964d3000b5874e7a163895’,)), ‘name’
=> ‘Rick Hightower’,
‘gender’ => ‘m’, ‘phone’ => ‘520-555-1212’, ‘age’
=> 42,)

array (‘_id’ => MongoId::__set_state(array(
‘$id’ => ‘4f984cae72329d0ecd8716c8’,)), ‘name’
=> ‘Diana Hightower’, ‘gender’ => ‘f’,
‘phone’ => ‘520-555-1212’, ‘age’ => 30,)

array (‘_id’ => MongoId::__set_state(array(
‘$id’ => ‘4f9e170580cbd54f27000000’,)), ‘gen-
der’ => ‘m’, ‘age’ => 8, ‘name’ => ‘Lucas High-
tower’,
‘phone’ => ‘520-555-1212’,)

The other half of the equation is in figure 14. (bottom)

The output for figure 14 is as follows:

Output
Rick?
array (‘_id’ => MongoId..., ‘name’ => ‘Rick
Hightower’, ‘gender’ => ‘m’,
‘phone’ => ‘520-555-1212’, ‘age’ => 42,)
Diana?
array (‘_id’ => MongoId::..., ‘name’ => ‘Diana
Hightower’, ‘gender’ => ‘f’,
‘phone’ => ‘520-555-1212’, ‘age’ => 30,)
Diana by id?
array (‘_id’ => MongoId::..., ‘name’ => ‘Diana
Hightower’, ‘gender’ => ‘f’,
‘phone’ => ‘520-555-1212’, ‘age’ => 30,)

Here is the complete PHP listing.

PHP complete listing

<!--?php

$m = new Mongo();
$db = $m->selectDB(“tutorial”);
$employees = $db->selectCollection(“employees”);
$cursor = $employees->find();

Figure 14 pHp code listing

Figure 13 pHp code listing

http://www.InfoQ.com

Page 24Contents

foreach ($cursor as $employee) {
 echo var_export ($employee, true) . “< br />”;
}

$cursor=$employees->find(array(“name” => “Rick
Hightower”));
echo “Rick? < br /> “ . var_export($cursor-
>getNext(), true);

$cursor=$employees->find(array(“age” =>
array(‘$lt’ => 35)));
echo “Diana? < br /> “ . var_export($cursor-
>getNext(), true);

$cursor=$employees->find(array(“_id” => new Mong
oId(“4f984cce72320612f8f432bb”)));
echo “Diana by id? < br /> “ . var_export($cursor-
>getNext(), true);
?>

If you like object-mapping to documents you should try the

poorly named MongoLoid for PHP.

Additional shell commands, learning
about MongoDB via the console
One of the nice things that I appreciate about MongoDB, that

is missing from some other NoSQL implementation, is getting

around and finding information with the console application.

They seem to closely mimic what can be done in MySQL so

if you are familiar with MySQL, you will feel fairly at home in

the mongo console.

To list all of the databases being managed by the mongod in-

stance, you would do the following

> show dbs
local (empty)
tutorial 0.203125GB

To list the collections being managed by a database you could

do this:

> show collections
employees
system.indexes

To show a list of users, you do the following:

> show users

To look at profiling and logging, you do this:

> show profile
db.system.profile is empty
Use db.setProfilingLevel(2) will enable profiling
..

> show logs
global

> show log global
Mon Apr 23 23:33:14 [initandlisten] MongoDB
starting :
 pid=11773 port=27017 dbpath=/etc/mongodb/data
64-bit…
…
Mon Apr 23 23:33:14 [initandlisten] options:
 { config: “/etc/mongodb/mongodb.config”, dbpath:
“/etc/mongodb/data” }

Also the commands and JavaScript functions themselves

have help associated with them. To see all of the operations

that DBCollection supports you could do this:

> db.employees.help()
DBCollection help

db.employees.find().help() - show DBCursor help
db.employees.count()
db.employees.dataSize()
db.employees.distinct(key) - eg. db.employees.
distinct(‘x’)
db.employees.drop() drop the collection
db.employees.dropIndex(name)
db.employees.dropIndexes()
db.employees.ensureIndex(keypattern[,options]) -
options is an object with these possible fields:
name, unique, dropDups
db.employees.reIndex()
db.employees.find([query],[fields]) - query is an
optional query filter. fields is optional set of
fields to return.
 e.g. db.employees.find({x:77} , {name:1, x:1})
db.employees.find(...).count()
db.employees.find(...).limit(n)
db.employees.find(...).skip(n)
db.employees.find(...).sort(...)
db.employees.findOne([query])
db.employees.findAndModify({ update : ... , re-
move : bool [, query: {}, sort: {}, ‘new’: false]
})
db.employees.getDB() get DB object associated
with collection
db.employees.getIndexes()
db.employees.group({ key : ..., initial: ...,
reduce : ...[, cond: ...] })
db.employees.mapReduce(mapFunction , reduce-

http://www.InfoQ.com

Page 25Contents

Function , {optional params=””})
db.employees.remove(query)
db.employees.renameCollection(newName ,
{droptarget}) renames the collection.
db.employees.runCommand(name , {options})
runs a db command with the given name where
the first param is the collection name
db.employees.save(obj)
db.employees.stats()
db.employees.storageSize() - includes free
space allocated to this collection
db.employees.totalIndexSize() - size in bytes
of all the indexes
db.employees.totalSize() - storage allocated
for all data and indexes
db.employees.update(query, object[, upsert_
bool, multi_bool])
db.employees.validate({full}) – SLOW
db.employees.getShardVersion() - only for use
with sharding
db.employees.getShardDistribution() - prints
statistics about data distribution in the
cluster ...

Just to show a snake eating its own tail, you can even get

help about help as follows:

> help
 db.help() help on db methods
 db.mycoll.help() help on collection
methods
 rs.help() help on replica set
methods
 help admin administrative help
 help connect connecting to a db help
 help keys key shortcuts
 help misc misc things to know
 help mr mapreduce
> help
…

show dbs show database names
show collections show collections in cur-
rent database
show users show users in current da-
tabase
show profile show most recent system.
profile entries time>= 1ms

show logs show the accessible logger
names
show log [name] prints out the last segment
of log in memory,

The MongoDB console reminds me of a cross between the

MySQL console and Python’s console. Once you use the

console, it is hard to imagine using a NoSQL solution that

does not have a decent console (hint, hint).

Conclusion
The poorly named NoSQL movement seems to be here to

stay. The need to have reliable storage that can be easily

queried without the schema migration pain and scalability

woes of traditional RDBMS is increasing. Developers want

more agile systems without the pain of schema migration.

MongoDB is a good first step for developers dipping their

toe into the NoSQL solution space. It provides easy-to-use

tools like its console and provides many language drivers.

This article covered the basics of MongoDB architecture,

caveats and how to program in MongoDB for Java, PHP,

JavaScript and Python developers.

I hope you enjoyed reading this article half as much as I

enjoyed writing it.

Resources
Click here to view the complete list of references on InfoQ.

About the Author
Rick Hightower, CTO of Mammatus, has worked as a CTO, Director of Development and a Developer for

the last 20 years. He has been involved with J2EE since its inception. He worked at an EJB container com-

pany in 1999, and did large scale Java web development since 2000 (JSP, Servlets, etc.). He has been work-

ing with Java since 1996 (Python since 1997), and writing code professionally since 1990. Rick was an early

Spring enthusiast. Rick enjoys bouncing back and forth between C, PHP, Python, Groovy and Java devel-

opment. He has written several programming and software development books as well as many articles

and editorials for journals and magazines over the years. Lately he has been focusing on NoSQL, and Cloud

Computing development.

http://www.InfoQ.com
http://www.infoq.com/articles/mongodb-java-php-python

Page 26Contents

“Lessons Learned
Building Storm”

by Nathan Marz, Lead Engineer
Backtype @Twitter

“LinkedIn Endorsements:
Bootstrapping a Data Product”

by Sam Shah, Principal Engineer in
LinkedIn Data Team

“eHarmony Case Study:
Data Science of Love”

by Vaclav Petricek, Principal Data
Scientist at eHarmony

“A Little Graph Theory
for the Busy Developer”

by Jim Webber, Chief Scientist at Neo Technology
and Co-Author of “Rest in Practice”

“Evolving Panorama of Data”
by Rebecca Parsons, CTO Thoughtworks

“The Art of Information
Refinery at Cue”

by Daniel Gross, CEO of Cue

“Building Applications using
Apache Hadoop”

by Eli Collins, Cloudera Platform Lead

BIg DATA AND
APPLIED DATA SCIENCE
 NEW YORk
 JUNE 12-14, 2013

BIG DATA AND APPLIED DATA SCIENCE
@ QCON NEW YORK: JUNE 10-14, 2013

With case studies from LinkedIn, NASA, eHarmony,
and Twitter, the “Big Data” and “Applied Data Science”

tracks at QCon New York bring you up to speed
on the latest tools, tricks, and technologies for

handling the biggest of datasets.
Save $100 when you register with promo code: “NOSQL”

http://www.InfoQ.com
http://qconnewyork.com/registration-intro.html

Page 27Contents

Cap Twelve
Years Later:
how the “rules”
have Changed
By Eric Brewer

The CAP theorem asserts that any net worked shared-data

system can have only two of three desirable properties.

How ever, by explicitly handling partitions, designers can

optimize consistency and availability, thereby achieving

some trade-off of all three.

In the decade since its introduction, designers and

researchers have used (and sometimes abused) the CAP

theorem as a reason to explore a wide variety of novel

distributed systems. The NoSQL movement also has

applied it as an argument against traditional databases.

The CAP theorem states that any networked shared-data

system can have at most two of three desirable properties:

• Consistency (C) equivalent to having a single

up-to-date copy of the data;

• High availability (A) of that data (for updates); and

• Tolerance to network partitions (P).

This expression of CAP served its purpose, which was

to open the minds of designers to a wider range of systems

and tradeoffs; indeed, in the past decade, a vast range of new

systems has emerged, as well as much debate on the relative

merits of consistency and availability. The “2 of 3” formulation

was always misleading because it tended to oversimplify the

tensions among properties. Now such nuances matter. CAP

prohibits only a tiny part of the design space: perfect availability

and consistency in the presence of partitions, which are rare.

Although designers still need to choose between

consistency and availability when partitions are present,

there is an incredible range of flexibility for handling

partitions and recovering from them. The modern CAP

goal should be to maximize combinations of consistency

and availability that make sense for the specific application.

Such an approach incorporates plans for operation during

a partition and for recovery afterward, thus helping

designers think about CAP beyond its historically perceived

limitations.

why “2 of 3” is missleading
The easiest way to understand CAP is to think of two

nodes on opposite sides of a partition. Allowing at least

one node to update state will cause the nodes to become

inconsistent, thus forfeiting C. Likewise, if the choice is to

preserve consistency, one side of the partition must act

as if it is unavailable, thus forfeiting A. Only when nodes

communicate is it possible to preserve both consistency

and availability, thereby forfeiting P. The general belief is

that for wide-area systems, designers cannot forfeit P and

therefore have a difficult choice between C and A. In some

sense, the NoSQL movement is about creating choices that

focus on availability first and consistency second; databases

that adhere to ACID properties (atomicity, consistency,

isolation, and durability) do the opposite. The “ACID, BASE,

and CAP” sidebar explains this difference in more detail.

In fact, this exact discussion led to the CAP theorem. In the

mid-1990s, my colleagues and I were building a variety of

cluster-based wide-area systems (essentially early cloud

computing), including search engines, proxy caches, and

content distribution systems1. Because of both revenue

goals and contract specifications, system availability was

at a premium, so we found ourselves regularly choosing to

optimize availability through strategies such as employing

caches or logging updates for later reconciliation. Although

these strategies did increase availability, the gain came at

the cost of decreased consistency.

The first version of this consistency-versus-availability

argument appeared as ACID versus BASE2, which was not

“ Cap prohibits...
perfect availability
and consistency
in the presence of
partitions.”

http://www.InfoQ.com

Page 28Contents

well received at the time, primarily because people love the

ACID properties and are hesitant to give them up. The CAP

theorem’s aim was to justify the need to explore a wider

design space-hence the “2 of 3” formulation. The theorem

first appeared in fall 1998. It was published in 19993 and in

the keynote address at the 2000 Symposium on Principles

of Distributed Computing4, which led to its proof.

As the “CAP Confusion” sidebar explains, the “2 of 3” view

is misleading on several fronts. First, because partitions

are rare, there is little reason to forfeit C or A when the

system is not partitioned. Second, the choice between

C and A can occur many times within the same system

at very fine granularity; not only can subsystems make

different choices, but the choice can change according to

the operation or even the specific data or user involved.

Finally, all three properties are more continuous than

binary. Availability is obviously continuous from 0 to 100

percent, but there are also many levels of consistency,

and even partitions have nuances, including disagreement

within the system about whether a partition exists.

Exploring these nuances requires pushing the traditional

way of dealing with partitions, which is the fundamental

challenge. Because partitions are rare, CAP should allow

perfect C and A most of the time, but when partitions are

present or perceived, a strategy that detects partitions

and explicitly accounts for them is in order. This strategy

should have three steps: detect partitions; enter an explicit

partition mode that can limit some operations; and initiate

a recovery process to restore consistency and compensate

for mistakes made during a partition.

ACID, BASE and CAP
ACID and BASE represent two design philosophies at

opposite ends of the consistency-availability spectrum.

The ACID properties focus on consistency and are the

traditional approach of databases. My colleagues and I

created BASE in the late 1990s to capture the emerging

design approaches for high availability and to make explicit

both the choice and the spectrum. Modern large-scale

wide-area systems, including the cloud, use a mix of both

approaches.

Although both terms are more mnemonic than precise,

the BASE acronym (being second) is a bit more awkward:

Basically Available, Soft state, Eventually consistent.

Soft state and eventual consistency are techniques that

work well in the presence of partitions and thus promote

availability.

The relationship between CAP and ACID is more complex

and often misunderstood, in part because the C and A in

ACID represent different concepts than the same letters in

CAP and in part because choosing availability affects only

some of the ACID guarantees. The four ACID properties are:

Atomicity (A). All systems benefit from atomic operations.

When the focus is availability, both sides of a partition

should still use atomic operations. Moreover, higher-level

atomic operations (the kind that ACID implies) actually

simplify recovery.

Consistency (C). In ACID, the C means that a transaction

preserves all the database rules, such as unique keys.

In contrast, the C in CAP refers only to single-copy

consistency, a strict subset of ACID consistency. ACID

consistency also cannot be maintained across partitions.

Partition recovery will need to restore ACID consistency.

More generally, maintaining invariants during partitions

might be impossible, thus the need for careful thought

about which operations to disallow and how to restore

invariants during recovery.

isolation (i). Isolation is at the core of the CAP theorem:

if the system requires ACID isolation, it can operate on at

most one side during a partition. Serializability requires

communication in general and thus fails across partitions.

Weaker definitions of correctness are viable across

partitions via compensation during partition recovery.

durability (d). As with atomicity, there is no reason to

forfeit durability, although the developer might choose

to avoid needing it via soft state (in the style of BASE)

due to its expense. A subtle point is that, during partition

recovery, it is possible to reverse durable operations that

unknowingly violated an invariant during the operation.

However, at the time of recovery, given a durable history

from both sides, such operations can be detected and

orrected. In general, running ACID transactions on each

side of a partition makes recovery easier and enables a

framework for compensating transactions that can be used

for recovery from a partition.

Cap-latency connection
In its classic interpretation, the CAP theorem ignores

latency, although in practice, latency and partitions are

deeply related. Operationally, the essence of CAP takes

place during a timeout, a period when the program must

http://www.InfoQ.com

Page 29Contents

make a fundamental decision: the partition decision:

• cancel the operation and thus decrease availability, or

• proceed with the operation and thus risk inconsistency.

Retrying communication to achieve consistency, for

example via Paxos or a two-phase commit, just delays

the decision. At some point the program must make the

decision; retrying communication indefinitely is in essence

choosing C over A.

Thus, pragmatically, a partition is a time bound on

communication. Failing to achieve consistency within the

time bound implies a partition and thus a choice between C

and A for this operation. These concepts capture the core

design issue with regard to latency: are two sides moving

forward without communication?

This pragmatic view gives rise to several important

consequences. The first is that there is no global notion of

a partition, since some nodes might detect a partition, and

others might not. The second consequence is that nodes

can detect a partition and enter a partition mode-a central

part of optimizing C and A.

Finally, this view means that designers can set time bounds

intentionally according to target response times; systems

with tighter bounds will likely enter partition mode more

often and at times when the network is merely slow and

not actually partitioned.

Sometimes it makes sense to forfeit strong C to avoid the

high latency of maintaining consistency over a wide area.

Yahoo’s PNUTS system incurs inconsistency by maintaining

remote copies asynchronously5. However, it makes the

master copy local, which decreases latency. This strategy

works well in practice because single user data is naturally

partitioned according to the user’s (normal) location.

Ideally, each user’s data master is nearby.

Facebook uses the opposite strategy6: the master copy

is always in one location, so a remote user typically has a

closer but potentially stale copy. However, when users

update their pages, the update goes to the master copy

directly as do all the user’s reads for a short time, despite

higher latency. After 20 seconds, the user’s traffic reverts

to the closer copy, which by that time should reflect the

update.

Cap confusion
Aspects of the CAP theorem are often misunderstood,

particularly the scope of availability and consistency, which

can lead to undesirable results. If users cannot reach the

service at all, there is no choice between C and A except

when part of the service runs on the client. This exception,

commonly known as disconnected operation or offline

mode, is becoming increasingly important. Some HTML5

features - in particular, on-client persistent storage - make

disconnected operation easier going forward. These

systems normally choose A over C and thus must recover

from long partitions.

Scope of consistency reflects the idea that, within some

boundary, state is consistent, but outside that boundary

all bets are off. For example, within a primary partition, it

is possible to ensure complete consistency and availability,

while outside the partition, service is not available.

Paxos and atomic multicast systems typically match this

scenario. In Google, the primary partition usually resides

within one datacenter; however, Paxos is used on the wide

area to ensure global consensus, as in Chubby, and highly

available durable storage, as in Megastore.

Independent, self-consistent subsets can make forward

progress while partitioned, although it is not possible to

ensure global invariants. For example, with sharding, in

which designers prepartition data across nodes, it is highly

likely that each shard can make some progress during a

partition. Conversely, if the relevant state is split across a

partition or global invariants are necessary, then at best

only one side can make progress and at worst no progress

is possible.

Does choosing consistency and availability (CA) as the “2

of 3” make sense? As some researchers correctly point out,

exactly what it means to forfeit P is unclear. Can a

designer choose not to have partitions? If the choice is CA,

and then there is a partition, the choice must revert to C

or A. It is best to think about this probabilistically: choosing

CA should mean that the probability of a partition is far less

than that of other systemic failures, such as disasters or

multiple simultaneous faults.

Such a view makes sense because real systems lose both C

and A under some sets of faults, so all three properties are

a matter of degree. In practice, most groups assume that a

datacenter (single site) has no partitions within, and thus

design for CA within a single site; such designs, including

traditional databases, are the pre-CAP default. However,

although partitions are less likely within a datacenter, they

are indeed possible, which makes a CA goal problematic.

Finally, given the high latency across the wide area, it is

http://www.InfoQ.com

Page 30Contents

relatively common to forfeit perfect consistency across the

wide area for better performance.

Another aspect of CAP confusion is the hidden cost of

forfeiting consistency, which is the need to know the

system’s invariants. The subtle beauty of a consistent

system is that the invariants tend to hold even when the

designer does not know what they are. Consequently, a

wide range of reasonable invariants will work just fine.

Conversely, when designers choose A, which requires

restoring invariants after a partition, they must be explicit

about all the invariants, which is both challenging and prone

to error. At the core, this is the same concurrent updates

problem that makes multithreading harder than sequential

programming.

Managing partitions
The challenging case for designers is to mitigate a par-

tition’s effects on consistency and availability. The key

idea is to manage partitions very explicitly, including not

only detection, but also a specific recovery process and a

plan for all of the invariants that might be violated during a

partition. This management approach has three steps:

• Detect the start of a partition,

• Enter an explicit partition mode that may limit some

operations, and

• Initiate partition recovery when communication is restored.

The last step aims to restore consistency and compensate

for mistakes the program made while the system was

partitioned.

Figure 1 shows a partition’s evolution. Normal operation is a

sequence of atomic operations, and thus partitions always start

between operations. Once the system times out, it detects

a partition, and the detecting side enters partition mode. If a

partition does indeed exist, both sides enter this mode, but

one-sided partitions are possible. In such cases, the other side

communicates as needed and either this side responds correctly

or no communication was required; either way, operations

remain consistent. However, because the detecting side could

have inconsistent operations, it must enter partition mode.

Systems that use a quorum are an example of this one-sided

partitioning. One side will have a quorum and can proceed,

but the other cannot. Systems that support disconnected

operation clearly have a notion of partition mode, as do some

atomic multicast systems, such as Java’s JGroups.

Once the system enters partition mode, two strategies

are possible. The first is to limit some operations, thereby

reducing availability. The second is to record extra

information about the operations that will be helpful during

partition recovery. Continuing to attempt communication

will enable the system to discern when the partition ends.

Which operations should proceed?
Deciding which operations to limit depends primarily on

the invariants that the system must maintain. Given a set

of invariants, the designer must decide whether or not to

maintain a particular invariant during partition mode or risk

violating it with the intent of restoring it during recovery.

For example, for the invariant that keys in a table are

unique, designers typically decide to risk that invariant and

allow duplicate keys during a partition. Duplicate keys are

easy to detect during recovery, and, assuming that they can

be merged, the designer can easily restore the invariant.

For an invariant that must be maintained during a partition,

however, the designer must prohibit or modify operations

that might violate it. (In general, there is no way to tell if the

operation will actually violate the invariant, since the state

of the other side is not knowable.) Externalized events, such

as charging a credit card, often work this way. In this case,

the strategy is to record the intent and execute it after the

recovery. Such transactions are typically part of a larger

workflow that has an explicit order-processing state, and

there is little downside to delaying the operation until the

partition ends. The designer forfeits A in a way that users

do not see. The users know only that they placed an order

and that the system will execute it later.

More generally, partition mode gives rise to a fundamental

user-interface challenge, which is to communicate that

tasks are in progress but not complete. Researchers have

explored this problem in some detail for disconnected

operation, which is just a long partition. Bayou’s calendar

application, for example, shows potentially inconsistent

(tentative) entries in a different color.13 Such notifications

are regularly visible both in workflow applications, such as

commerce with e-mail notifications, and in cloud services

with an offline mode, such as Google Docs.

One reason to focus on explicit atomic operations, rather

http://www.InfoQ.com

Page 31Contents

than just reads and writes, is that it is vastly easier to

analyze the impact of higher-level operations on invariants.

Essentially, the designer must build a table that looks at the

cross product of all operations and all invariants and decide

for each entry if that operation could violate the invariant.

If so, the designer must decide whether to prohibit, delay,

or modify the operation. In practice, these decisions can

also depend on the known state, on the arguments, or on

both. For example, in systems with a home node for certain

data, 5 operations can typically proceed on the home node

but not on other nodes.

The best way to track the history of operations on both

sides is to use version vectors, which capture the causal

dependencies among operations. The vector’s elements are

a pair (node, logical time), with one entry for every node that

has updated the object and the time of its last update. Given

two versions of an object, A and B, A is newer than B if, for

every node in common in their vectors, A’s times are greater

than or equal to B’s and at least one of A’s times is greater.

If it is impossible to order the vectors, then the updates

were concurrent and possibly inconsistent. Thus, given the

version vector history of both sides, the system can easily

tell which operations are already in a known order and

which executed concurrently. Recent work14 proved that

this kind of causal consistency is the best possible outcome

in general if the designer chooses to focus on availability.

Partition recovery
At some point, communication resumes and the partition

ends. During the partition, each side was available and thus

making forward progress, but partitioning has delayed

some operations and violated some invariants. At this

point, the system knows the state and history of both

sides because it kept a careful log during partition mode.

The state is less useful than the history, from which the

system can deduce which operations actually violated

invariants and what results were externalized, including

the responses sent to the user. The designer must solve

two hard problems during recovery:

• The state on both sides must become consistent, and

• There must be compensation for the mistakes made

during partition mode.

It is generally easier to fix the current state by starting from

the state at the time of the partition and rolling forward both

sets of operations in some manner, maintaining consistent

state along the way. Bayou did this explicitly by rolling back

the database to a correct time and replaying the full set of

operations in a well-defined, deterministic order so that

all nodes reached the same state.15 Similarly, source-code

control systems such as the Concurrent Versioning System

(CVS) start from a shared consistent point and roll forward

updates to merge branches.

Most systems cannot always merge conflicts. For example,

CVS occasionally has conflicts that the user must resolve

manually, and wiki systems with offline mode typically

leave conflicts in the resulting document that require

manual editing.16

Conversely, some systems can always merge conflicts by

choosing certain operations. A case in point is text editing in

Google Docs,17 which limits operations to applying a style and

adding or deleting text. Thus, although the general problem

of conflict resolution is not solvable, in practice, designers

can choose to constrain the use of certain operations during

partitioning so that the system can automatically merge

state during recovery. Delaying risky operations is one

relatively easy implementation of this strategy.

Using commutative operations is the closest approach

to a general framework for automatic state convergence.

The system concatenates logs, sorts them into some

order, and then executes them. Commutativity implies the

ability to rearrange operations into a preferred consistent

global order. Unfortunately, using only commutative

operations is harder than it appears; for example, addition

is commutative, but addition with a bounds check is not (a

zero balance, for example).

Recent work by Marc Shapiro and colleagues at INRIA18,19

has greatly improved the use of commutative operations for

state convergence. The team has developed commutative

replicated data types (CRDTs), a class of data structures

that provably converge after a partition, and describe how

to use these structures to ensure that all operations during a

partition are commutative, or represent values on a lattice and

ensure that all operations during a partition are monotonically

increasing with respect to that lattice.

The latter approach converges state by moving to the

maximum of each side’s values. It is a formalization and

improvement of what Amazon does with its shopping cart:20

after a partition, the converged value is the union of the

two carts, with union being a monotonic set operation. The

consequence of this choice is that deleted items may reappear.

However, CRDTs can also implement partition-tolerant

sets that both add and delete items. The essence of this

approach is to maintain two sets: one each for the added

http://www.InfoQ.com

Page 32Contents

and deleted items, with the difference being the set’s

membership. Each simplified set converges, and thus so

does the difference. At some point, the system can clean

things up simply by removing the deleted items from both

sets. However, such cleanup generally is possible only while

the system is not partitioned. In other words, the designer

must prohibit or postpone some operations during a

partition, but these are cleanup operations that do not limit

perceived availability. Thus, by implementing state through

CRDTs, a designer can choose A and still ensure that state

converges automatically after a partition.

Compensation issues
in an automated teller machine
In the design of an automated teller machine (ATM), strong

consistency would appear to be the logical choice, but in

practice, A trumps C. The reason is straightforward enough:

higher availability means higher revenue. Regardless, ATM

design serves as a good context for reviewing some of the

challenges involved in compensating for invariant violations

during a partition.

The essential ATM operations are deposit, withdraw, and

check balance. The key invariant is that the balance should

be zero or higher. Because only withdraw can violate the

invariant, it will need special treatment, but the other two

operations can always execute.

The ATM system designer could choose to prohibit

withdrawals during a partition, since it is impossible to know

the true balance at that time, but that would compromise

availability. Instead, using stand-in mode (partition mode),

modern ATMs limit the net withdrawal to at most k, where k

might be $200. Below this limit, withdrawals work completely;

when the balance reaches the limit, the system denies

withdrawals. Thus, the ATM chooses a sophisticated limit on

availability that permits withdrawals but bounds the risk.

When the partition ends, there must be some way to

both restore consistency and compensate for mistakes

made while the system was partitioned. Restoring state

is easy because the operations are commutative, but

compensation can take several forms. A final balance

below zero violates the invariant. In the normal case, the

ATM dispensed the money, which caused the mistake to

become external. The bank compensates by charging a fee

and expecting repayment. Given that the risk is bounded,

the problem is not severe. However, suppose that the

balance was below zero at some point during the partition

(unknown to the ATM), but that a later deposit brought it

back up. In this case, the bank might still charge an overdraft

fee retroactively, or it might ignore the violation, since the

customer has already made the necessary payment.

In general, because of communication delays, the banking

system depends not on consistency for correctness, but

rather on auditing and compensation. Another example of

this is “check kiting,” in which a customer withdraws money

from multiple branches before they can communicate

and then flees. The overdraft will be caught later, perhaps

leading to compensation in the form of legal action.

Acknowledgments
I thank Mike Dahlin, Hank Korth, Marc Shapiro, Justin

Sheehy, Amin Vahdat, Ben Zhao, and the IEEE Computer

Society volunteers for their helpful feedback on this work.

References
Click here to view the complete list of references on InfoQ.

About the Author
Eric Brewer is a professor of computer science at the University of California, Berkeley, and vice president

of infrastructure at Google. His research interests include cloud computing, scalable servers, sensor net-

works, and technology for developing regions. He also helped create USA.gov, the official portal of the

federal government. Brewer received a PhD in electrical engineering and computer science from MIT. He

is a member of the National Academy of Engineering. Contact him at brewer@cs.berkeley.edu

“ MongoDB is a good first step for developers
dipping their toe into the NoSQL solution space.”

http://www.InfoQ.com
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Page 33Contents

NoSQL: past,
present, Future
presentation Summary By Abel Avram

During the session NoSQL: Past, Present, Future held

at QCon San Francisco 2012, Eric Brewer, the author of

the CAP Theorem, briefly traced the origins of NoSQL

databases and their evolution to the present time, then

took a peek at their future along with some considerations

on partitioning.

The first NoSQL database Brewer is aware of was a

Navigational Database (ND) created by Charles Bachman,

an ACM Turing Award winner. It was the pre-SQL era so the

database was not labeled as ‘NoSQL’, but it had many things in

common with today’s key-value stores and graph databases.

ND was “a database made of pointers and records: you

traverse the pointers to get the records and it’s very manual,”

but it had “ tremendously high performance” being used for

airline reservations worldwide until 2005 when it was retired.

While quite useful at its time, ND had a major drawback,

according to Brewer. “Because everything is pointers

and all the pointers are in the code or on the disk, it’s very

hard to change anything so it really has no encapsulation

whatsoever and [is] really hard to evolve.” Something had

to be done, being clear that the code had to be separated

from the data.

Further, the evolution of data storage and data management

technologies took two different paths. One was built around

a top-down data model that would allow data to be moved

off one storage device to another while still performing

reasonably well, which eventually happened with some help

from “Moore’s law and increased computing power.” Data

was to be accessed through an API, a query language, and

the first implementation was IBM System R with its SEQUEL,

later to be called SQL.

At about the same time, Unix was created, and its main idea

was to provide an efficient file system that would persist data

to the disk. Unix was built from the bottom up using layers

and one of them was a key-value store called DBM, running

on top of the file system. This represented the beginning

of the other development path in data storage which later

came to be known as NoSQL.

Because of its influence from the Unix tradition, NoSQL

takes a different approach to the problem of data

persistence, taking a “systems view of how to build

data-storage systems versus a database view of the

data storage systems. There are many things that fit this

model that are directly literally from the Unix tradition,”

according to Brewer.

What matters in the SQL world is to have a well-defined

data model that provides ACID transactions and clean

semantics; the implementation is not important as long

as the system provides reasonable performance. On

the other side, the systems view emphasizes low-level

implementation, modularity, having transactions but

with the ability to change the implementation. NoSQL

is a reaction to the monolithic database and all the

problems associated with object-relational mapping.

The ideal database should have a clean model implemented

in a well-structured modular system that allows “you to get

to the inside pieces or the top-level view. We don’t actually

have this artifact today” and “it’s not clear yet how to mix

them very well,” according to Brewer. NoSQL systems

borrow concepts from SQL databases such as high-level

models, operations, multi component transactions, indices,

and joins because they are good and we have the raw

power necessary to do them.

During the pre-Internet era ACID was “sacred” and BASE

was disregarded. It was a time when availability expectations

were low, when credit card transactions were done on paper.

But later, availability became very important especially for

online systems that had to satisfy client requests in real time.

It was the time for BASE to be taken more seriously.

The CAP theorem was formulated for that reason, to

emphasize the fact that you cannot have it all: you cannot

have both availability and instantaneous consistency

when it comes to writes in partitioned systems. And some

companies internalized the idea and implemented it as it

was the case with Dynamo at Amazon.

CAP does not imply you should forfeit consistency, but you

should suspend it temporarily while you are partitioned

and get it back when you close the partition. Durability

is also useful and needed to fix partitions. Durability can

be achieved in single-site transactions which are atomic

operations taking place without any partitioning within that

site. That’s how Google BigTable works, with transactions

limited to one row or a set of columns within a row. And the

http://www.InfoQ.com

Page 34Contents

respective columns are co-located within a set of nodes

that are not partitioned.

Partitions are temporary, and you need to consider what to

do when recovering from that state. It is possible to provide

two different types of services, for the normal state and for

the partitioned one, each with its own SLA. You can detect

when a system is partitioned. When a timeout occurs you

need to choose between consistency and availability. You

either want to preserve data consistency and you wait

until the write is performed or you commit locally and

try to reconcile the differences later achieving eventual

consistency. Another approach is implementing lazy

consistency: write locally and reconcile differences only

when a read is requested.

When a system is partitioned, some of the operations may

be allowed while some may not, especially those for which

consistency is a must. The CAP theorem does not specify

whether all operations are forbidden or allowed during

partitioning.

When partitioning ends, one should proceed with partition

recovery, the main goal being to restore consistency. This

can be done through a combination of rollbacks, merging,

commutative operations, etc. The recovery is successful if

there were no “bad” side effects associated with reconciled

operations. A system is well designed when there are no

such side effects, such as telling a client he has his purchase

secured when in fact the item is out of stock. Or worse,

the client’s credit card is charged and the item is not on

inventory.

ACID was used instead of BASE for banking operations in

the past because such transactions were said to need to

be consistent at all times. But there has been the case of

ATM operations where transactions may be temporarily

inconsistent and the system partitioned. It happens

sometimes that ATMs are disconnected from the network

and they keep serving clients instead of being out of order.

A partition is created during that time, and it is easily

reconciled later because operations are commutative -

increments or decrements -which can be reordered. This is

a case where availability is chosen over consistency.

One of the problems is possible negative side effects: the

client wants to withdraw an amount of money larger than

what’s actually available in his or her bank account. The

system will discover later what happened but for the bank

it won’t be good news. Usually, this is not a huge problem

because clients tend to add money to their accounts later.

The bank could also limit the amount withdrawn when the

ATM is disconnected to limit damages. This example shows

that consistency is not paramount even for banking, and

partitioning may involve assuming a risk.

In conclusion, a realistic database model, which in fact

is currently used by some businesses, is to tolerate

partitioning but to establish beforehand what the system

can and cannot do during that state. And to have a recovery

plan, including some actions to be taken when there are

negative side effects. A model where the system is always

consistent and never makes mistakes is unrealistic.

If CAP told people in the beginning to choose between

consistency and availability, now the message is “CAP

disallows only a fraction of what’s possible”, that is, you can’t

have full consistency with full availability. Other than that,

ACID systems are improving their availability while BASE

systems their consistency. Both systems are converging,

heading in the same direction. The ideal solution may

be some kind of combination of the two but this may not

always be easy to achieve.

“ when a timeout occurs you need to choose
between consistency and availability.“

http://www.InfoQ.com

Page 35Contents

related NoSQL presentations
and interviews on infoQ.com

NoSQL
presentations
Connecting Millions of Mobile
Devices to the Cloud
http://www.infoq.com/presentations/Couchbase-Syncpoint

Damien Katz explains how Couchbase Syncpoint provides

real time data synchronization capabilities between

multiple mobile devices and the cloud.

Erlang, the Language from the Future?
http://www.infoq.com/presentations/Erlang-Pros-Cons

Damien Katz explains the benefits and drawbacks of

using Erlang, why this language is from the future and why

Couchbase has migrated some of the CouchDB’s initial

Erlang code to C/C++.

NoSQL Database Technology: A Survey
and Comparison of Systems
http://www.infoq.com/presentations/NoSQL-Survey-

Comparison

James Phillips presents the origins of NoSQL, followed by

a comparison of various NoSQL solutions and ending with

an architect’s view of Couchbase.

Why CouchDB?
http://www.infoq.com/presentations/Why-CouchDB

Benjamin Young introduces CouchDB, its schema-less

data store, REST API, HTTP-based replication, plugins

such as R-tree and GeoCouch, ways to scale it out and

then scaling down with mobile solutions.

A Little Graph Theory for the Busy
Developer
http://www.infoq.com/presentations/neo4j-graph-theory

Jim Webber explores data analytic techniques using social

graph properties inspired by anthropology and sociology,

extracting online business intelligence from graph

matching.

MongoDB Large-Scale Data
Centric Architectures
http://www.infoq.com/presentations/MongoDB-Design

Kenny Gorman provides advice on designing systems

using MongoDB in order to avoid some of the pitfalls

lurking along the way.

MySQL to NoSQL: Data Modeling
Challenges in Supporting Scalability
http://www.infoq.com/presentations/MySQL-NoSQL-

Data-Modeling

Kenneth M. Anderson shares some of the data-modeling

issues encountered while transitioning from a relational

database to NoSQL.

Data Modeling with Graphs
http://www.infoq.com/presentations/Data-Modeling-Graphs

Peter Bell presents several patterns for modeling and

retrieving data from graph databases using Neo4j in his

examples.

NoSQL interviews
InfoQ: Rich Hickey on Datomic:
Datalog, Databases, Persistent Data
Structures
http://www.infoq.com/interviews/hickey-datomic

Rich Hickey and Justin Sheehy about
Datastores, NoSql and CAP
http://www.infoq.com/interviews/rich-Hickey-and-justin-

sheehy-about-datastores,-nosql-and-cap

Debasish Ghosh on Functional
Programming, NoSQL
http://www.infoq.com/interviews/ghosh-functional

Page 35Contents

http://www.InfoQ.com
http://www.infoq.com/presentations/Couchbase-Syncpoint
http://www.infoq.com/presentations/Couchbase-Syncpoint
http://www.infoq.com/presentations/NoSQL-Survey-Comparison
http://www.infoq.com/presentations/NoSQL-Survey-Comparison
http://www.infoq.com/presentations/Why-CouchDB%20
http://www.infoq.com/presentations/neo4j-graph-theory%20
http://www.infoq.com/presentations/MongoDB-Design%20
http://www.infoq.com/presentations/MySQL-NoSQL-Data-Modeling
http://www.infoq.com/presentations/MySQL-NoSQL-Data-Modeling
http://www.infoq.com/presentations/Data-Modeling-Graphs%20
http://www.infoq.com/interviews/hickey-datomic%20
http://www.infoq.com/interviews/rich-Hickey-and-justin-sheehy-about-datastores%2C-nosql-and-cap
http://www.infoq.com/interviews/rich-Hickey-and-justin-sheehy-about-datastores%2C-nosql-and-cap
http://www.infoq.com/interviews/ghosh-functional%20
http://www.InfoQ.com

